Matematika SMA - Relasi dan Fungsi (4) - Sifat-Sifat Fungsi, Fungsi Injektif Surjektif (A)

Le GuruLes
27 Oct 202013:05

Summary

TLDRThis educational video script introduces the fundamental properties of functions, focusing on injective, surjective, and bijective functions. It explains the differences through examples and provides a clear method to determine if a function is injective, surjective, or bijective by examining the mapping of elements from the domain to the codomain. The script also includes exercises to test understanding, using sets A and B with various mappings to illustrate the concepts. The video concludes with an invitation to like, share, and subscribe for more educational content.

Takeaways

  • 😀 The video provides an in-depth discussion about the properties of functions, specifically focusing on injective, surjective, and bijective functions.
  • 📚 The presenter encourages viewers to subscribe to the channel and use the notification bell to stay updated with the latest videos on functions.
  • 🔍 The difference between injective, surjective, and bijective functions is explained through their definitions: injective functions map each element of the domain to a unique element in the codomain, surjective functions cover every element in the codomain, and bijective functions are both injective and surjective.
  • 📈 The script includes an example with sets A = {a, b, c, d} and B = {1, 2, 3, 4} to illustrate the concepts of injective, surjective, and bijective functions.
  • 🤔 The video offers a step-by-step guide on how to check if a function is injective, surjective, or bijective by examining the mapping of elements between the domain and codomain.
  • 🚫 It is demonstrated that the function f(x) = x^2 is not injective because different inputs can lead to the same output, violating the definition of an injective function.
  • 📉 The function f(x) = x^2 is also shown not to be surjective because it cannot map to negative outputs, as the square of a real number is always non-negative.
  • 💡 The linear function f(x) = 4x is proven to be injective by showing that different inputs result in different outputs, satisfying the injective condition.
  • 🌐 The same linear function f(x) = 4x is also proven to be surjective, as every element in the codomain has a corresponding element in the domain.
  • 🎯 The conclusion is drawn that f(x) = 4x is bijective because it meets both the injective and surjective criteria.
  • 👍 The video ends with a reminder for viewers to like, share, and subscribe for more educational content, and to follow on Instagram for updates.

Q & A

  • What are the three types of functions discussed in the video script?

    -The three types of functions discussed are injective (one-to-one), surjective (onto), and bijective (one-to-one and onto).

  • What is an injective function?

    -An injective function is a function where every element of the codomain is paired with exactly one element from the domain.

  • How is a surjective function defined?

    -A surjective function is one where every element of the codomain has at least one corresponding element in the domain.

  • What is a bijective function?

    -A bijective function is one that is both injective and surjective, meaning every element in the domain is paired uniquely with an element in the codomain, and every element in the codomain is the image of some element in the domain.

  • How can you determine if a function is injective?

    -To determine if a function is injective, check if different elements in the domain are mapped to different elements in the codomain, ensuring no two elements in the domain have the same image.

  • What is the criterion for a function to be surjective?

    -A function is surjective if every element in the codomain is the image of at least one element in the domain, meaning the codomain is fully covered by the images of the domain elements.

  • How do you check if a function is bijective?

    -A function is bijective if it is both injective and surjective. This means each element in the domain maps to a unique element in the codomain, and every element in the codomain has a pre-image in the domain.

  • What is the example function given in the script to illustrate a non-injective function?

    -The example function given is f(x) = x^2, which is shown to be non-injective because different values of x (like 2 and -2) can result in the same output (f(2) = f(-2) = 4).

  • What is the example function provided to demonstrate a surjective function?

    -The example function provided is f(x) = 4x, which is surjective because every element in the codomain has a corresponding element in the domain that maps to it.

  • How is the function f(x) = 4x proven to be injective in the script?

    -The function f(x) = 4x is proven to be injective by showing that if x1 ≠ x2, then f(x1) ≠ f(x2), which is demonstrated by choosing specific values for x1 and x2 and showing their images are different.

  • Why is the function f(x) = x^2 not surjective?

    -The function f(x) = x^2 is not surjective because there are elements in the codomain (negative numbers) that do not have a corresponding element in the domain that would map to them, as the square of a real number cannot be negative.

  • How is the bijectivity of the function f(x) = 4x established in the script?

    -The bijectivity of f(x) = 4x is established by proving it is both injective (each domain element maps to a unique codomain element) and surjective (every codomain element has a pre-image in the domain).

Outlines

00:00

📚 Introduction to Function Properties

This paragraph introduces the concept of function properties, specifically focusing on the characteristics of injective (one-to-one), surjective (onto), and bijective (one-to-one correspondence) functions. It explains the differences between these properties using illustrations and provides a basic understanding of how to determine if a function is injective, surjective, or neither by examining the mapping between elements of the domain and codomain. The paragraph also introduces a practice exercise involving the mapping of sets A and B to determine the type of function represented.

05:00

🔍 Analyzing Function Types with Examples

This paragraph delves deeper into analyzing whether a given function is injective, surjective, or bijective by using specific examples. It discusses the criteria for each type of function and applies these to the function f(x) = x^2, demonstrating that it is neither injective nor surjective due to the existence of multiple x values that map to the same y value. The explanation includes a visual representation of the function's graph and the implications of the function's properties on the codomain.

10:00

📉 Examining Linear Functions for Injectivity and Surjectivity

The final paragraph examines the properties of a linear function, f(x) = 4x, to determine if it is injective and surjective. It provides a step-by-step analysis, starting with proving injectivity by showing that different x values result in different f(x) values. The paragraph then moves on to surjectivity, explaining that since every element in the codomain has a corresponding element in the domain, the function is surjective. Finally, it concludes that because the function is both injective and surjective, it is also bijective. The summary ends with a reminder to like, share, and subscribe for more educational content.

Mindmap

Keywords

💡Injective Function

An injective function, also known as a one-to-one function, is a type of function where each element of the domain is mapped to a unique element in the codomain. In the script, the concept is introduced as a fundamental property of functions, and it is used to distinguish it from surjective and bijective functions. The script provides an example to illustrate injective functions, stating that every element in set B is paired with exactly one element from set A, ensuring no two elements in A map to the same element in B.

💡Surjective Function

A surjective function, also called an onto function, is a function where every element of the codomain has at least one corresponding element in the domain. The video script explains surjectivity by stating that all elements in the codomain are accounted for, meaning there are no 'orphaned' elements without a corresponding element in the domain. The script uses the example of a function where every element in set B is mentioned at least once, indicating surjectivity.

💡Bijective Function

A bijective function is a function that is both injective and surjective. It ensures a one-to-one correspondence between the elements of the domain and the codomain. In the script, bijectivity is explained as the union of injective and surjective properties, meaning each element in the codomain is uniquely paired with an element from the domain, and every element in the codomain is accounted for. The script uses visual illustrations to demonstrate bijectivity in the context of set mappings.

💡Domain

The domain of a function refers to the set of all possible inputs for a function. In the script, the domain is the set 'A' which is given as 'abcd' in the example, representing the inputs to the function. The concept is crucial in understanding how functions operate, as it defines the range of values that can be mapped to the codomain.

💡Codomain

The codomain of a function is the set of all possible outputs the function can produce. In the script, the codomain is the set 'B' which is represented as '1 2 3 4'. It is important in the discussion of surjective functions, as it helps determine if every possible output is reached at least once by the function.

💡Function Mapping

Function mapping is the process of assigning outputs to inputs in a function. The script describes function mappings with examples like 'a to 1B, b to 1C, c to 3', illustrating how each element in the domain is associated with an element in the codomain. This concept is central to understanding the properties of functions discussed in the video.

💡Real Numbers

Real numbers are all the numbers that can be represented on the number line, including integers, fractions, and irrational numbers. In the script, the discussion of functions mapping real numbers to real numbers is introduced, with examples of functions like 'f(x) = x squared' and 'f(x) = 4x'. These functions are analyzed for their injectivity, surjectivity, and bijectivity within the context of real numbers.

💡Quadrant

In the context of the script, quadrants refer to the four sections of the Cartesian plane, each defined by a combination of positive and negative x and y coordinates. The script mentions quadrants when discussing the graph of the function 'f(x) = x squared', which is a parabola opening upwards with its vertex at the origin, spanning all quadrants.

💡Graph

A graph is a visual representation of a function, showing the relationship between the input and output values. The script uses the term 'graph' to describe the visual appearance of functions like 'f(x) = x squared' and 'f(x) = 4x', helping to illustrate the properties of injectivity and surjectivity through their shapes and lines on the Cartesian plane.

💡Linear Function

A linear function is a function of the form f(x) = mx + b, where m and b are constants, and x is the input variable. The script refers to a linear function when discussing 'f(x) = 4x', which is a straight line with a slope of 4 on the graph. Linear functions are injective if the slope is not zero and are always surjective, as they cover all possible outputs within the real numbers.

💡Paraboloid

A paraboloid is a three-dimensional surface that resembles a parabola in its shape. In the script, the term is used to describe the graph of 'f(x) = x squared', which opens upwards like a bowl, illustrating the concept of a function that is not injective due to the same output being produced by different inputs.

Highlights

Introduction to the concept of functions and their properties.

Explanation of the three types of functions: injective (one-to-one), surjective (onto), and bijective (one-to-one correspondence).

Description of an injective function where each element of the codomain is paired with exactly one element from the domain.

Illustration of an injective function with an example where some elements in the codomain may not have a pair.

Definition of a surjective function where every element of the codomain has at least one corresponding element from the domain.

Example of a surjective function where all members of the codomain are paired with the domain elements exactly once.

Combination of injective and surjective properties to define a bijective function.

Illustration of a bijective function where each element in the codomain is uniquely paired with an element from the domain.

Introduction to exercises to determine whether given functions are injective, surjective, or bijective.

Method to check if a function is injective by ensuring the codomain elements are mentioned exactly once.

Process to verify if a function is surjective by confirming all codomain elements are accounted for.

Criteria for a function to be bijective: it must be both injective and surjective.

Analysis of a specific function from set A to set B to determine its properties.

Explanation of why the function f(x) = x^2 is not injective due to the mapping of different x values to the same f(x) value.

Demonstration that f(x) = x^2 is not surjective because negative numbers cannot be achieved as outputs.

Conclusion that f(x) = x^2 is neither injective nor surjective, and therefore not bijective.

Introduction of the function f(x) = 4x and its linear graph as an example.

Verification that f(x) = 4x is injective by showing different x values result in different f(x) values.

Confirmation that f(x) = 4x is surjective as every element in the codomain has a corresponding x value in the domain.

Final conclusion that f(x) = 4x is bijective because it is both injective and surjective.

Closing remarks encouraging viewers to like, share, and subscribe for more educational content.

Transcripts

play00:00

halo halo teman-teman Jumpa lagi bersama

play00:02

kali di channel reguler kali ini kita

play00:05

akan belajar tentang fungsi yang akan

play00:07

dibahas lebih dalam tentang sifat-sifat

play00:09

fungsi sebelumnya jangan lupa subscribe

play00:12

channel guru les ya tombolnya dari

play00:14

sebelah kanan bawah jangan lupa juga

play00:16

Klik tombol loncengnya supaya bisa dapet

play00:19

notifikasi video terbaru dari regulasi

play00:21

di sebelah kanan atas akan ada link

play00:24

playlist supaya teman-teman bisa belajar

play00:26

tentang fungsi dari awal sampai akhir

play00:29

sifat-sifat fungsi ada tiga yaitu fungsi

play00:32

injektif surjektif dan bijektif

play00:35

perbedaan dari ketiganya dimulai dari

play00:37

fungsi injektif yang setiap anggota

play00:39

kodomain dipasangkan Tepat satu kali

play00:41

dengan anggota domain nya ilustrasinya

play00:43

seperti ini jadi anggota di B hanya satu

play00:46

kali dipasangkan oleh anggota dia

play00:48

meskipun ada anggota B yang tidak punya

play00:50

pasangan sedangkan fungsi subjektif

play00:53

setiap anggota kodomainnya adalah

play00:55

pasangan dari anggota domain nya

play00:57

ilustrasinya seperti ini anggota di B

play01:00

kau dipasangkan oleh anggota dia dan

play01:02

hanya satu kali ilustrasinya seperti ini

play01:04

jadi semua anggota di B di pasangkan

play01:07

oleh anggota dia Dan bisa lebih dari

play01:09

satu kali dipasangkan Nah kalau fungsi

play01:11

bijektif adalah perpaduan injektif dan

play01:14

subjektif jadi setiap anggota Kodam

play01:16

lainnya adalah pasangan dari domain dan

play01:19

dipasangkan Tepat satu kali dengan

play01:21

anggota domain nya ilustrasinya seperti

play01:23

ini anggota di B semua dipasangkan oleh

play01:26

anggota dia dan hanya satu kali

play01:28

dipasangkan kita ke latihan soal yang

play01:30

pertama jika himpunan a = abcd dan

play01:34

himpunan b = 1 2 3 4 manakah fungsi dari

play01:38

a ke b berikut yang merupakan fungsi

play01:41

injektif surjektif dan bijektif karena

play01:44

fungsinya dari a ke b artinya Himpunan a

play01:48

adalah domain dan himpunan b adalah

play01:50

kodomainnya fungsi pada poin a&y itu

play01:53

acoma 1B koma 1C koma 3 dan D koma empat

play01:57

kita akan periksa Apakah fungsi tersebut

play02:00

merupakan fungsi injektif surjektif

play02:02

ataukah bijektif called akan berikan

play02:05

sedikit tips bagaimana cara memeriksa

play02:07

fungsi tersebut adalah injektif

play02:09

surjektif ataukah bijektif untuk fungsi

play02:12

injektif kita akan periksa Apakah

play02:14

anggota kodomainnya masing-masing

play02:16

disebutkan sebanyak satu kali di sini

play02:18

kodomainnya disebutkan satu-satu 3 dan 4

play02:23

bisa kita lihat satu disebutkan lebih

play02:26

dari satu kali artinya fungsi ini

play02:28

bukanlah fungsi injektif untuk fungsi

play02:31

surjektif kita akan periksa Apakah semua

play02:34

anggota kodomainnya sudah disebutkan

play02:36

atau belum di sini ada 11 3 dan 4 ada

play02:40

dua anggota dari himpunan b yang tidak

play02:42

disebutkan artinya terdapat anggota dari

play02:45

himpunan b yang tidak memiliki pasangan

play02:47

sehingga fungsi ini bukanlah fungsi

play02:50

surjektif untuk fungsi bijektif kita

play02:52

akan periksa Apakah semua anggota

play02:54

codomain sudah disebutkan dan hanya satu

play02:57

kali disebutkan Tapi karena tadi kita

play03:00

tahu bahwa fungsi ini bukanlah fungsi

play03:02

injektif maka bisa kita katakan fungsi

play03:05

ini bukanlah fungsi bijektif karena jika

play03:08

salah satu dari injektif atau subjektif

play03:10

tidak terpenuhi maka fungsi tersebut

play03:12

bukanlah fungsi bijektif selanjutnya

play03:14

fungsi pada Point b acoma satu become 2C

play03:18

koma 4 dan D3 kita akan periksa Apakah

play03:22

fungsi tersebut injektif surjektif

play03:24

ataukah bijektif cukup kita lihat

play03:27

kodomainnya di sini ada 1243

play03:31

masing-masing anggota B disebutkan

play03:34

sebanyak satu kali artinya fungsi pada

play03:36

Point b adalah fungsi injektif

play03:38

selanjutnya Karena semua anggota

play03:40

kodomainnya sudah disebutkan yaitu 124

play03:44

dan 3 maka fungsi tersebut adalah fungsi

play03:47

surjektif karena fungsi pada Point b ini

play03:50

merupakan fungsi injektif dan subjektif

play03:53

artinya fungsi ini juga merupakan fungsi

play03:56

bijektif selanjutnya fungsi pada poin C

play03:58

yaitu acoma 3

play04:00

Hai become 2,1 dan D koma empat kita

play04:03

akan periksa Apakah fungsi tersebut

play04:05

injektif surjektif ataukah bijektif

play04:07

disini anggota kodomain yang disebutkan

play04:10

adalah 321 dan empat Karena

play04:13

masing-masing anggota kodomain

play04:15

disebutkan sebanyak satu kali maka

play04:17

fungsi ini merupakan fungsi injektif

play04:20

selanjutnya Karena semua anggota

play04:22

kodomain sudah disebutkan yaitu 321 dan

play04:26

empat artinya semua anggota dari

play04:28

codomain memiliki pasangan sehingga

play04:30

fungsi tersebut adalah fungsi subjektif

play04:33

karena fungsi ini merupakan fungsi

play04:35

injektif dan surjektif maka bisa kita

play04:38

katakan fungsi ini juga merupakan fungsi

play04:40

bijektif selanjutnya fungsi pada point D

play04:43

yaitu aqabah2 become 2C koma dua dan D2

play04:47

kita juga akan periksa Apakah fungsi ini

play04:49

merupakan fungsi injektif surjektif

play04:51

ataukah bijektif Disini kodomain yang

play04:54

disebutkan Hanya dua artinya dua adalah

play04:57

peta dari semua anggota

play05:00

domainnya Karena anggota dari codomain

play05:02

disebutkan lebih dari satu kali yaitu

play05:04

dua sebanyak empat kali maka fungsi ini

play05:07

bukanlah merupakan fungsi injektif

play05:10

selanjutnya Karena anggota dari

play05:12

kodomainnya disebutkan Hanya dua

play05:14

sedangkan 1 3 dan 4 tidak disebutkan

play05:17

maka fungsi ini bukanlah merupakan

play05:19

fungsi subjektif karena fungsi ini

play05:21

bukanlah fungsi injektif ataupun

play05:23

surjektif bisa dipastikan bahwa fungsi

play05:26

ini juga bukan merupakan fungsi bijektif

play05:28

soal yang kedua periksa Apakah fungsi f

play05:32

yang memetakan bilangan real ke bilangan

play05:34

real berikut adalah fungsi injektif

play05:36

surjektif bijektif atau malah bukan

play05:39

ketiganya yang pertama di sini ada

play05:41

smadengan x kuadrat kita akan periksa

play05:44

Apakah ia fungsi injektif dengan

play05:47

memeriksa Jika x1 tidak = X2 maka FX1

play05:54

juga tidak boleh = FX 2 tapi kita coba

play05:59

pilih

play06:00

jika x satunya = 2 dan X 2-nya = min 2

play06:05

dimana2 dan mint dua adalah elemen

play06:09

bilangan real maka akan kita dapatkan

play06:12

FX1 yaitu dua pangkat dua adalah 4 dan f

play06:19

X2 yaitu ini dua pangkat dua adalah

play06:24

empat di sini bisa kita lihat x1 dan x2

play06:27

nya berbeda tapi x1 dan x2 nya sama

play06:31

yaitu empat jadi bisa kita katakan

play06:33

karena X1 yang tidak = X2 tetapi sx1 =

play06:42

FX 2 jadi fx = x kuadrat bukanlah fungsi

play06:49

injektif

play06:52

Hai tapi Kak Kenapa pilih x1 dan x2 nya

play06:56

harus dua dan mint dua kalau kita

play06:58

bayangkan fungsi fx = x kuadrat kurang

play07:02

lebih gambar parabolanya seperti ini ini

play07:05

sumbu-x dan ini sumbu-y atau FX kalau

play07:09

kita pilih satu titik X disini maka

play07:12

hasil pemetaannya adalah FX disini tapi

play07:16

FX ini juga merupakan hasil dari

play07:19

pemetaan dari nilai x yang berbeda di

play07:22

sebelah sini artinya terdapat dua

play07:25

anggota X yang dipetakan ke titik yang

play07:28

sama pada FX artinya anggota kodomainnya

play07:32

dipetakan lebih dari satu kali sehingga

play07:35

fungsi ini bukanlah merupakan fungsi

play07:37

injektif sehingga untuk membuktikannya

play07:40

kita harus memilih dua titik dari domain

play07:43

yaitu X yang hasil pemetaan nya sama di

play07:46

sini kali pilih esnya dua dan mint dua

play07:49

yang hasil pemetaan nya sama yaitu empat

play07:52

teman

play07:52

bisa pilih X yang lain Misalnya tiga dan

play07:55

min 3 dimana hasil FX1 dan FX duanya

play07:59

sama yaitu 9 selanjutnya akan kita

play08:02

periksa Apakah fungsi ini subjektif atau

play08:04

tidak pertama kita harus cek kodomainnya

play08:07

untuk fungsi x kuadrat tidak mungkin

play08:09

hasilnya negatif karena bilangan negatif

play08:12

juga merupakan bagian dari bilangan riil

play08:15

artinya terdapat anggota dari kodomain

play08:17

yang tidak memiliki pasangan dari

play08:19

domainnya yaitu bilangan yang negatif

play08:22

untuk membuktikannya kita akan pilih

play08:24

kode main atau FX yang merupakan

play08:28

bilangan negatif misalnya min3 dimana

play08:31

jika kita pilih FX = min 3 tapi tidak

play08:36

ada excellent real yang mengakibatkan

play08:39

atau sehingga FX nya yaitu x kuadrat =

play08:45

min 3 karena tidak mungkin bilangan

play08:48

kuadrat hasilnya negatif jadi F

play08:52

Hai = x kuadrat bukan merupakan fungsi

play08:57

surjektif selanjutnya untuk memeriksa

play09:01

Apakah fungsi tersebut merupakan fungsi

play09:03

bijektif bisa kita lihat pada pembuktian

play09:07

fungsi injektif dan fungsi surjektif

play09:09

sebelumnya karena fungsi fx = x kuadrat

play09:13

bukan fungsi injektif maka bisa kita

play09:16

katakan fungsi tersebut juga bukan

play09:19

merupakan fungsi bijektif atau karena

play09:22

fungsi fx = x kuadrat bukan merupakan

play09:26

fungsi surjektif maka sudah pasti fungsi

play09:29

tersebut bukan merupakan fungsi bijektif

play09:32

selanjutnya fungsi yang kedua yaitu FX =

play09:35

4 x kurang lebih grafik liniernya

play09:39

seperti ini disini adalah sumbu x dan

play09:42

ini adalah sumbu y atau FX bisa kita

play09:45

lihat setiap anggota di X hanya

play09:48

dipetakan satu kali ke FX misalnya

play09:51

disini

play09:52

yang dipetakan satu kali kesini dan

play09:54

anggota ekspedisi ini juga dipetakan

play09:56

satu kali ke anggota FX disini dan

play10:00

seterusnya artinya fungsi ini adalah

play10:02

fungsi injektif Bagaimana cara

play10:05

membuktikannya cara membuktikan fungsi

play10:07

ini adalah fungsi injektif juga sama

play10:10

caranya seperti sebelumnya yaitu jika

play10:12

kita pilih X1 yang berbeda dengan X2

play10:16

maka haruslah SX satunya juga tidak = FX

play10:22

2 disini kali akan pilih X1 = 3 dan x2 =

play10:29

min 3 maka f x 1 = 101 tiga yaitu 12 dan

play10:38

FX 2 = 4x Kalimin tiga yaitu mint 12

play10:44

karena terdapat X1 yang tidak = X2 yang

play10:50

mengakibatkan FX

play10:52

itu juga tidak = FX 2 jadi fungsi fx =

play10:58

4x adalah fungsi injektif selanjutnya

play11:03

akan kita periksa Apakah fungsi fx = 4x

play11:07

merupakan fungsi surjektif jika kita

play11:10

bayangkan kembali grafiknya yang

play11:12

merupakan garis linier kurang lebih

play11:14

seperti ini terlihat bahwa semua anggota

play11:17

FX memiliki pasangan dari x atau domain

play11:23

nya artinya fungsi fx = 4x adalah fungsi

play11:27

surjektif Bagaimana cara membuktikannya

play11:29

kita akan mulai dari kodomainnya

play11:32

terlebih dahulu misal Fa = B gimana b

play11:37

elemen real sehingga saw itu 4A = b maka

play11:45

a = b perempat karena B elemen real

play11:52

keempat juga merupakan elemen real maka

play11:55

a adalah elemen real karena bilangan

play11:59

riil per bilangan real menghasilkan

play12:02

bilangan real juga jadi sudah jelas

play12:04

bahwa setiap anggota kodomain Yang tadi

play12:07

kita misalkan Fa = B elemen Pril

play12:09

memiliki pasangan dari domainnya yaitu

play12:13

a-yong merupakan elemen real juga jadi

play12:16

FX = 4x adalah fungsi surjektif

play12:24

Hai selanjutnya untuk memeriksa fungsi

play12:26

ini merupakan fungsi bijektif tentu kita

play12:29

lihat pada pembuktian fungsi injektif

play12:31

dan subjektif karena tadi sudah terbukti

play12:33

fungsi fx = 4x adalah fungsi injektif

play12:37

sekaligus fungsi surjektif maka fungsi

play12:40

fx = 4x juga merupakan fungsi bijektif

play12:46

Terima kasih untuk teman-teman yang

play12:49

sudah menonton video ini sampai akhir

play12:51

Selamat belajar ya jangan lupa like dan

play12:54

share video ini agar semakin banyak

play12:56

teman-teman lain yang merasakan

play12:57

manfaatnya jangan lupa juga subscribe

play13:00

dan follow instagram lagu rules sampai

play13:03

jumpa divideo selanjutnya dadaa

Rate This

5.0 / 5 (0 votes)

相关标签
Function PropertiesMathematicsEducationalInjective FunctionSurjective FunctionBijective FunctionDomain and CodomainReal NumbersMapping RulesMath TutorialLearning Channel
您是否需要英文摘要?