Graficar Funciones Lineales en 3 pasos (ordenada y pendiente) | Ejemplos

IngE Darwin
6 Jul 202004:36

Summary

TLDREste video explica cómo graficar funciones lineales de manera fácil y rápida. Comienza recordando que las funciones lineales tienen una variable independiente de grado uno y un término independiente. Luego, el proceso se ejemplifica con tres funciones diferentes. Se muestran pasos para ubicar los puntos clave en el plano, utilizando el término independiente y el número que acompaña a la variable x, desplazándose en el eje y y en el eje x. También se destaca cómo manejar funciones sin término independiente, y se dan recomendaciones para tratar coeficientes decimales. Es un método práctico para graficar líneas rectas.

Takeaways

  • 📊 Las funciones lineales tienen una variable independiente de grado uno y un término independiente.
  • 📏 La gráfica de una función lineal es una línea recta, y basta con conocer dos puntos para graficarla.
  • 📝 Se puede usar una tabla de valores o puntos de corte con los ejes, pero en este caso se utilizará un método más corto.
  • 🟢 En la primera función f(x) = 2/3x + 1, el término independiente es 1 y se ubica en el eje y.
  • 🔢 El numerador (2) indica el desplazamiento hacia arriba o abajo, y el denominador (3) indica el desplazamiento hacia la derecha.
  • 📐 Después de marcar dos puntos en la gráfica, se unen con una regla para formar la recta.
  • 🔴 En la segunda función g(x) = -4x + 2, el término independiente es 2, y se desplaza 4 unidades hacia abajo y 1 unidad a la derecha.
  • ⚫ La tercera función y(x) = -5/2x no tiene término independiente, por lo que el primer punto es el origen.
  • ⬇️ Se desplazan 5 unidades hacia abajo y 2 hacia la derecha para graficar la tercera función.
  • 📎 Si el término independiente es cero, la función pasa por el origen, y es recomendable convertir decimales a fracciones.

Q & A

  • ¿Qué característica principal tienen las funciones lineales?

    -Las funciones lineales tienen la variable independiente 'x' de grado uno, es decir, con exponente 1, y un término independiente o un número sin variable.

  • ¿Cómo es la gráfica de una función lineal?

    -La gráfica de una función lineal es una línea recta.

  • ¿Qué método se utiliza en el video para graficar una función lineal?

    -Se utiliza un procedimiento basado en identificar el término independiente y el número que acompaña a la variable 'x' para ubicar los puntos en el plano y luego trazar la recta.

  • ¿Qué representa el término independiente en una función lineal?

    -El término independiente es el número que se ubica en el eje 'y' cuando 'x' es igual a cero.

  • En la función f(x) = (2/3)x + 1, ¿qué significa el numerador y el denominador del coeficiente 2/3?

    -El numerador 2 indica cuántas unidades se desplaza hacia arriba (porque es positivo), y el denominador 3 indica cuántas unidades se desplaza hacia la derecha.

  • ¿Cómo se traza la gráfica de la función f(x) = (2/3)x + 1?

    -Primero se ubica el valor 1 en el eje 'y', luego se suben 2 unidades y se desplazan 3 unidades hacia la derecha para marcar el segundo punto. Finalmente, se trazan ambos puntos con una regla.

  • En la función g(x) = -4x + 2, ¿cómo se interpreta el coeficiente de 'x'?

    -El coeficiente -4 indica que se deben bajar 4 unidades (por ser negativo) y luego desplazarse una unidad hacia la derecha.

  • ¿Cómo se grafica la función g(x) = -4x + 2?

    -Primero se ubica el 2 en el eje 'y', luego se bajan 4 unidades y se desplaza una unidad hacia la derecha para marcar el segundo punto. Finalmente, se trazan ambos puntos con una regla.

  • En la función y(x) = (-5/2)x, ¿qué indica que no haya un término independiente?

    -Cuando no hay un término independiente, significa que la gráfica pasa por el origen de coordenadas (0,0).

  • ¿Qué se recomienda hacer si el coeficiente de 'x' es un decimal?

    -Se recomienda convertir el decimal a fracción y luego aplicar el mismo procedimiento para graficar la función.

Outlines

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Mindmap

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Keywords

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Highlights

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Transcripts

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora
Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
funciones linealesgráficas fácilesmatemáticas básicastutorial gráficopaso a pasoaprendizaje rápidoeducación matemáticatabla de valorespuntos de corteexplicación clara