Clase de Oscilaciones Libres: Ecuaciones y Gráficas del MAS

fisicojorge
27 Jan 202105:30

Summary

TLDREl guion describe el movimiento armónico simple de un cuerpo, que recorre cuatro veces su amplitud en un periodo. Se explican las fórmulas matemáticas de posición, velocidad y aceleración usando funciones trigonométricas y seres como la constante de fase y la frecuencia angular. Se discute la energía del sistema, demostrando que la energía total es constante y proporcional a la amplitud al cuadrado. Se presentan gráficas de posición, velocidad y aceleración, destacando su relación y desfasaje entre sí.

Takeaways

  • 🔄 Un cuerpo en movimiento armónico simple recorre cuatro veces su amplitud en un periodo de movimiento.
  • 🌀 La posición inicial y la mitad del periodo definen el punto de retorno a la posición de inicio.
  • 📐 La descripción matemática del movimiento periódico se expresa mediante funciones periódica, específicamente funciones trigonométricas.
  • 🎛️ La posición en cualquier tiempo se define como amplitud por el seno de la frecuencia angular más la fase inicial.
  • 🌐 La fase es una constante de fase que depende de las condiciones iniciales del movimiento y se repite cada periodo.
  • 🌀 La frecuencia angular es la cantidad de veces que se repite el movimiento por unidad de tiempo y se calcula como 2π dividido por el periodo.
  • 🚀 La velocidad del cuerpo se obtiene como la derivada de la posición y se expresa como la doble amplitud por el coseno de la fase.
  • 📉 La aceleración se encuentra al derivar la velocidad y se muestra como la doble frecuencia angular al cuadrado multiplicada por la posición.
  • 🔋 La energía del sistema oscilador se compone de energía potencial elástica y energía cinética.
  • 📊 Las gráficas de posición, velocidad y aceleración muestran un comportamiento cíclico y se desfasan entre sí en un cuarto de ciclo.

Q & A

  • ¿Cuál es el significado de 'movimiento armónico simple' mencionado en el guion?

    -El movimiento armónico simple es un tipo de oscilación que sigue una curva sinusoidal y se produce cuando un cuerpo es desplazado de su posición de equilibrio y luego es devuelto por una fuerza restauradora que es proporcional al desplazamiento.

  • ¿Cuál es la relación entre la amplitud y el periodo de un movimiento armónico simple?

    -En un movimiento armónico simple, el cuerpo recorre cuatro veces su amplitud en un periodo de movimiento. Esto significa que si el periodo es el tiempo que tarda en completar un ciclo, la amplitud es la distancia máxima desde la posición de equilibrio.

  • ¿Cómo se describe matemáticamente el movimiento periódico?

    -El movimiento periódico se describe matemáticamente utilizando funciones periódicas, generalmente funciones trigonométricas como el seno o el coseno, donde la posición en cualquier tiempo 't' se expresa como 'amplitud * sen(o * t + fase)'.

  • ¿Qué es la 'fase' en el contexto del movimiento armónico simple?

    -La fase es una constante que indica la posición inicial del cuerpo en el ciclo de oscilación. Es una medida de la desviación del punto de inicio del ciclo y depende de las condiciones iniciales del movimiento.

  • ¿Cómo se calcula la frecuencia angular en un movimiento armónico simple?

    -La frecuencia angular se calcula como 2π dividido por el periodo del movimiento. Es decir, la frecuencia angular es el número de ciclos completos que se producen en un segundo.

  • ¿Qué representa la velocidad en el movimiento armónico simple y cómo se calcula?

    -La velocidad en el movimiento armónico simple es la derivada de la posición con respecto al tiempo, y se calcula como la amplitud multiplicada por la frecuencia angular y el seno de la fase.

  • ¿Cómo se determina la aceleración en un movimiento armónico simple?

    -La aceleración es la derivada de la velocidad con respecto al tiempo, y en el caso del movimiento armónico simple, se determina como la amplitud multiplicada por la frecuencia angular al cuadrado y el coseno de la fase.

  • ¿Cuál es la relación entre la energía potencial elástica y la energía cinética en un sistema oscilador?

    -En un sistema oscilador, la energía potencial elástica y la energía cinética se intercambian continuamente. La energía total del sistema es la suma de ambas y se mantiene constante, igual a una mitad de la constante restauradora multiplicada por la amplitud al cuadrado.

  • ¿Cómo se representan gráficamente la posición, velocidad y aceleración en un movimiento armónico simple?

    -La posición se representa con un gráfico sinusoidal, la velocidad con un gráfico que está desfasado un cuarto de ciclo con respecto a la posición, y la aceleración con un gráfico que está desfasado un cuarto de ciclo con respecto a la velocidad y medio ciclo con respecto a la posición.

  • ¿Qué sucede con la velocidad y la aceleración cuando el cuerpo está en la posición de equilibrio?

    -Cuando el cuerpo está en la posición de equilibrio, la velocidad alcanza su valor máximo y la aceleración es cero, ya que es el punto de máxima rapidez y la fuerza de restitución no está actuando.

  • ¿Qué indica el gráfico de aceleración cuando el cuerpo está en su máximo desplazamiento?

    -Cuando el cuerpo está en su máximo desplazamiento, la velocidad es cero y la aceleración alcanza su valor máximo, indicando que la fuerza de restitución es máxima para devolver al cuerpo a la posición de equilibrio.

Outlines

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Mindmap

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Keywords

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Highlights

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Transcripts

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora
Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
MatemáticasFísicaMovimiento ArmónicoTrigonometríaGráficasEducativoConstante de FaseEnergía OscilatoriaPosiciónVelocidad