Long Division With Polynomials - The Easy Way!

The Organic Chemistry Tutor
8 Apr 201712:12

Summary

TLDRIn this video, the process of dividing polynomials using long division is explained in detail with multiple examples. The video walks through each step of the division process: dividing, multiplying, and subtracting. Key examples include dividing expressions like x^2 + 5x + 6 by x + 2, 2x^3 + 8x^2 - 6x + 10 by x - 2, and 6x^4 - 9x^2 + 18 by x - 3. The step-by-step instructions and visual aids help viewers understand polynomial long division, including handling remainders, ensuring clarity at every stage of the process.

Takeaways

  • 😀 Polynomial division involves dividing the terms of the dividend by the divisor, step by step.
  • 😀 Always start by dividing the leading term of the dividend by the leading term of the divisor.
  • 😀 After division, multiply the divisor by the result and subtract from the dividend.
  • 😀 The remainder is the part left after performing the division; it can be expressed as a fraction if non-zero.
  • 😀 Each division step involves dividing, multiplying, and subtracting to simplify the polynomial.
  • 😀 If the remainder is zero, the division is exact, and the quotient is the solution.
  • 😀 Dividing by a linear binomial (like x + 2 or x - 2) follows a consistent process of dividing, multiplying, and subtracting.
  • 😀 When dividing polynomials of higher degrees, ensure to include any missing powers of x as 0x terms.
  • 😀 The division process is repeated for each term in the dividend, ensuring all terms are simplified.
  • 😀 In case of a remainder, express it as a fraction added to the quotient, i.e., 'remainder / divisor'.
  • 😀 Polynomial long division is a reliable method for simplifying complex expressions and finding solutions to polynomial equations.

Q & A

  • What is the first step in dividing polynomials using long division?

    -The first step is to divide the leading term of the numerator by the leading term of the denominator.

  • Why do we subtract the exponents when dividing terms with variables?

    -We subtract the exponents when dividing terms with variables because we are following the laws of exponents, which state that when dividing powers with the same base, you subtract the exponents.

  • What do we do after dividing the terms in polynomial long division?

    -After dividing the terms, the next step is to multiply the divisor by the quotient we just found, then subtract the result from the current terms of the polynomial.

  • In the first example, what is the quotient when dividing x^2 + 5x + 6 by x + 2?

    -The quotient is x + 3, and there is no remainder.

  • What is the remainder when dividing 2x^2 + 8x^2 - 6x + 10 by x - 2?

    -The remainder is 46.

  • How do we handle a situation where there is a remainder in polynomial division?

    -When there is a remainder, we write the final answer as the quotient plus the remainder divided by the divisor.

  • In the second example, what do we get after dividing 2x^3 + 8x^2 - 6x + 10 by x - 2?

    -The quotient is 2x^2 + 12x + 18, with a remainder of 46.

  • How do we subtract terms during polynomial long division?

    -We subtract terms by changing the sign of the second term and then combining like terms.

  • What is the significance of the 'bring down' step in long division?

    -The 'bring down' step refers to bringing down the next term of the dividend after subtracting the multiplied result, so we can continue dividing the remaining terms.

  • In the third example, what is the remainder when dividing 6x^4 - 9x^2 + 18 by x - 3?

    -The remainder is 453.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
Polynomial DivisionMath TutorialLong DivisionAlgebraMath StepsProblem SolvingEducational VideoMath LearningMathematicsStep-by-StepMath Solutions
Benötigen Sie eine Zusammenfassung auf Englisch?