Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6

CrashCourse
18 Mar 201312:47

Summary

TLDRThis script from Crash Course Chemistry explores the fundamental concepts of stoichiometry, the science of measuring chemical reactions. It explains how chemistry scales from the infinitesimal to the massive, using relative atomic mass and the concept of a mole to translate atomic structures into measurable quantities. The video teaches how to calculate molar mass, balance chemical equations, and use molar ratios to determine reactant and product amounts in chemical processes, exemplified by the metabolism of sugar.

Takeaways

  • 🌐 Chemistry is fundamental to understanding the world, explaining the visible and invisible aspects of matter, and the behavior of substances.
  • 🔍 The challenge of chemistry lies in its scale; humans perceive the world in terms of mass, but chemistry deals with infinitesimal particles.
  • 📏 Stoichiometry is the science of measuring the quantities of substances in chemical reactions, allowing chemists to count atoms and molecules by weighing them.
  • 📊 Relative atomic mass is a key concept, representing the average mass of an element's naturally occurring isotopes, with units in atomic mass units (amu).
  • 📦 The unit of measurement for atomic mass, the amu, is defined relative to carbon-12, with 1 amu being 1/12th the mass of a carbon-12 atom.
  • 🍬 The script uses the example of sugar in tea to illustrate the importance of understanding mass in chemistry for everyday applications.
  • 🔬 Moles are a crucial unit in chemistry, allowing the expression of an element's atomic mass in terms of grams, with one mole containing Avogadro's number of entities (6.022 x 10^23).
  • ⚖️ Molar mass is the mass of one mole of a substance, calculated by summing the molar masses of its constituent elements, and is essential for understanding chemical reactions.
  • 🔄 Balancing chemical equations is a critical part of stoichiometry, ensuring that the number of atoms of each element is conserved in a reaction.
  • 🧪 The script demonstrates how to balance a chemical equation for the metabolism of sucrose, showing the relationship between reactants and products at the molecular level.
  • 📈 Molar ratios are used to calculate the specific masses of reactants and products in a chemical reaction, connecting theoretical stoichiometry with practical measurements.

Q & A

  • How does chemistry influence our understanding of the world?

    -Chemistry helps us understand the visible and invisible aspects of the world by explaining the appearance, feel, and behavior of substances. It bridges the understanding of the universe's largest and smallest scales, from the cosmos to the infinitesimal particles.

  • What is stoichiometry and why is it important in chemistry?

    -Stoichiometry is the science of measuring the quantities of reactants and products in chemical reactions. It's crucial because it allows chemists to count atoms and molecules by weighing them, translating from the microscopic to the macroscopic scale.

  • What is the significance of relative atomic mass in chemistry?

    -Relative atomic mass is the weighted average mass of an element's naturally occurring isotopes. It is significant because it provides a standard for measuring the mass of elements, which is essential for stoichiometric calculations.

  • Why were atomic mass units (amu) defined in relation to carbon-12?

    -Atomic mass units were defined in relation to carbon-12 because it is a common element that readily bonds with others. The choice of carbon-12, with its 12 protons and neutrons, allows for a consistent standard where one amu is 1/12th of the mass of a carbon-12 atom.

  • What is a mole in chemistry and why is it important?

    -A mole is a unit in chemistry that represents 6.022 x 10^23 particles of a substance. It's important because it allows chemists to express the mass of a substance in terms of its atomic or molecular count, facilitating calculations involving large numbers of atoms or molecules.

  • What is Avogadro's number and how does it relate to moles?

    -Avogadro's number is 6.022 x 10^23 and represents the number of atoms in 12 grams of carbon-12. It is foundational to the concept of a mole, as one mole of any substance contains Avogadro's number of entities.

  • How is molar mass defined and used in chemistry?

    -Molar mass is the mass of one mole of a substance, expressed in grams per mole (g/mol). It is calculated by summing the molar masses of the constituent elements in a compound. Molar mass is used to convert between the amount of substance (in moles) and its mass (in grams).

  • What is the purpose of balancing a chemical equation?

    -Balancing a chemical equation ensures that the number of atoms of each element is the same on both sides of the equation, reflecting the law of conservation of mass. It is essential for determining the proportions of reactants and products in a chemical reaction.

  • How can stoichiometry be used to calculate the amount of reactants or products needed for a reaction?

    -Stoichiometry uses molar ratios from balanced chemical equations to calculate the required amounts of reactants or products. By converting the given mass of one reactant or product into moles and applying the molar ratio, one can determine the mass of other substances involved in the reaction.

  • What is the practical application of stoichiometry in understanding the metabolism of sugar in the body?

    -Stoichiometry helps in understanding the metabolic process of sugar by allowing the calculation of the oxygen required and the carbon dioxide and water produced during the reaction. This can be used to determine the energy yield and the respiratory needs for metabolizing a certain amount of sugar.

  • How does the script illustrate the connection between atomic mass units, moles, and chemical equations?

    -The script connects atomic mass units, moles, and chemical equations by explaining how atomic mass units define the mass of elements, moles provide a way to count atoms or molecules in bulk amounts, and balanced chemical equations show the relationships between reactants and products. Together, they allow for the calculation of reaction stoichiometry.

Outlines

00:00

🔬 Chemistry's Role in Understanding the World

This paragraph introduces the fundamental role of chemistry in interpreting the world around us. It explains how chemistry provides insights into the visible and invisible aspects of matter, from the atomic structure to the behavior of substances. The script acknowledges the difficulty of grasping chemical concepts due to the vast difference between the scale of human perception and the infinitesimal scale of particles. It also introduces the concept of stoichiometry, the science of measuring the quantities of reactants and products in chemical reactions, which is essential for translating atomic and molecular quantities into macroscopic measurements. The paragraph uses the example of sugar in tea to illustrate the need for understanding mass in chemistry.

05:01

📊 The Significance of Relative Atomic Mass and Moles

This paragraph delves into the concept of relative atomic mass, which is a weighted average of the masses of an element's naturally occurring isotopes. It discusses the historical development of atomic mass units (amu) and the decision to base them on carbon-12, with 1 amu defined as 1/12th of the mass of a carbon-12 atom. The paragraph then introduces moles, a unit that allows chemists to express the mass of a substance in terms of its atomic or molecular count, using Avogadro's number (6.022 x 10^23) as a reference. The mole is highlighted as a crucial unit in chemistry, enabling the translation of atomic masses into grams and facilitating the calculation of molar masses for elements and compounds.

10:02

🧪 Balancing Chemical Equations and Calculating Reactions

The final paragraph focuses on the practical application of stoichiometry in balancing chemical equations and calculating the amounts of substances involved in chemical reactions. It emphasizes the importance of maintaining the conservation of mass, ensuring that the number of atoms of each element is the same on both sides of the equation. The process of balancing a chemical equation is explained using the example of sucrose metabolism in the body, which produces carbon dioxide and water as byproducts. The paragraph concludes with a demonstration of how to calculate the specific masses of reactants and products using molar ratios, illustrated with the calculation of the oxygen needed to metabolize a given mass of sugar.

Mindmap

Keywords

💡Chemistry

Chemistry is the scientific study of the composition, structure, properties, and reactions of matter. It is central to understanding the material world at the atomic and molecular level. In the video, chemistry is portrayed as a key to understanding the universe, from the smallest particles to the grandest scales, and its role in everyday life, such as sweetening tea, is highlighted.

💡Stoichiometry

Stoichiometry is the calculation of quantitative relationships between reactants and products in chemical reactions. It is crucial for determining the amounts of substances needed for reactions and is fundamental to the field of chemistry. The video emphasizes its importance by illustrating how it allows chemists to measure and predict chemical reactions, such as the breakdown of sugar in the body.

💡Atomic Structure

Atomic structure refers to the arrangement of protons, neutrons, and electrons within an atom. It is the foundation for understanding the properties and reactions of elements. The script uses the atomic structure of sugar to illustrate the complexity of chemical composition and how stoichiometry helps in quantifying these components.

💡Relative Atomic Mass

Relative atomic mass is a dimensionless value that represents the mass of an atom compared to the unified atomic mass unit (amu). It is calculated as the weighted average of the masses of an element's naturally occurring isotopes. The video explains how this concept is used to standardize measurements in chemistry and how it relates to the historical debate over the atomic weight standard.

💡Atomic Mass Units (amu)

An atomic mass unit is a standard unit of mass that quantifies the mass of atoms or molecules. It is defined as 1/12th the mass of a carbon-12 atom. The video uses the amu to explain how atomic masses are measured and compared, providing a basis for understanding molar mass and stoichiometry.

💡Isotopes

Isotopes are variants of a particular chemical element that have the same number of protons but different numbers of neutrons. The discovery of isotopes had a significant impact on the field of chemistry, as it complicated the concept of atomic mass. The script discusses how isotopes of oxygen led to the reevaluation of the atomic weight standard.

💡Mole

A mole is a unit in chemistry that represents the amount of a substance, containing 6.022 x 10^23 elementary entities (atoms, molecules, etc.). It is a bridge between the macroscopic and microscopic worlds, allowing chemists to relate the mass of a substance to its number of particles. The video explains how moles are used to express the mass of substances in grams based on their atomic or molecular mass.

💡Avogadro's Number

Avogadro's number is the number of constituent particles (usually atoms or molecules) in one mole of a substance, which is approximately 6.022 x 10^23. Named after Amedeo Avogadro, it is a fundamental constant in chemistry used to relate the amount of substance to its physical properties. The video uses Avogadro's number to define a mole and to illustrate the vast scale of atomic and molecular quantities.

💡Molar Mass

Molar mass is the mass of one mole of a substance, expressed in grams per mole (g/mol). It is calculated by summing the molar masses of the individual elements in a compound. The video explains how molar mass is used to convert between the mass of a substance and the number of moles, which is essential for stoichiometric calculations.

💡Chemical Equation

A chemical equation is a symbolic representation of a chemical reaction, showing the reactants and products with their respective quantities. The video discusses the importance of balancing chemical equations to reflect the conservation of mass, ensuring that the number of atoms of each element is the same on both sides of the equation.

💡Conservation of Mass

The conservation of mass is a principle stating that matter cannot be created nor destroyed in a chemical reaction. The total mass of the reactants equals the total mass of the products. The video uses this principle to explain the process of balancing chemical equations and to perform stoichiometric calculations, such as determining the amount of oxygen needed to metabolize sugar.

Highlights

Chemistry is the science that explains the visible world by describing the invisible atomic structures.

Chemistry bridges the understanding of the universe's largest and smallest scales.

Stoichiometry is the measurement of chemicals in reactions, allowing the translation from atomic to macro scales.

Relative atomic mass is a weighted average of an element's naturally occurring isotopes.

Atomic mass units (amu) are an arbitrary standard based on 1/12th the mass of a carbon-12 atom.

Historical debates led to the adoption of carbon-12 as the standard for atomic mass units.

A mole is a unit in chemistry that allows expressing an element's atomic mass in terms of grams.

Avogadro's number (6.022 x 10^23) defines the quantity of entities in one mole of a substance.

Molar mass is the mass of one mole of a substance, calculated as the sum of the molar masses of its elements.

Chemical equations must be balanced to reflect the conservation of mass in reactions.

Balancing chemical equations is essential for understanding the proportions of reactants and products.

Molar ratios are used to calculate the amounts of substances involved in chemical reactions.

Understanding stoichiometry enables the calculation of specific masses for chemical reactions.

The video demonstrates how to calculate the amount of oxygen needed to metabolize a certain mass of sugar.

Crash Course Chemistry explains complex chemical concepts in an accessible and engaging manner.

The episode was created by a team of experts, including writers, editors, and graphic designers.

Transcripts

play00:00

By now, you're probably starting to see how chemistry can change your view of the world.

play00:04

Chemistry explains everything you can see, how it looks, the way it feels, why it behaves the way it does,

play00:10

by describing everything that you can't see.

play00:12

It helps us understand the biggest stuff in the universe by helping us understand the tiniest.

play00:17

And that's why chemistry can be kind of hard to understand sometimes.

play00:20

Because we are, on a chemical scale, huge.

play00:24

Chemistry traffics in infinitesimal particles, but we are made of quadrillions of those things.

play00:29

They are the building blocks of mass; we are literally massive.

play00:34

So mass is how we massive beings tend to understand the world.

play00:39

In our day-to-day dealings with substances,

play00:41

we need to have some sense of how much of it there is before we can use it or predict how it's going to act.

play00:47

For example, chemistry will be happy to tell me that the atomic structure of the sugar in this packet is

play00:52

12 carbon atoms, 22 hydrogen atoms, and 11 oxygen atoms in every molecule.

play00:57

But I don't have any idea how many molecules of sugar I want to put in my tea!

play01:02

Or how that one molecule will react with other chemicals in my body.

play01:07

To understand that kind of stuff, I need to know the mass of the sugar that I'm dealing with.

play01:12

In other words, I need to measure it.

play01:14

And that, is why there's stoichiometry,

play01:17

the science of measuring chemicals that go into and come out of any given reaction.

play01:22

In Greek, it literally means measuring elements,

play01:25

and, in essence, it allows us to count up atoms and molecules by weighing them.

play01:30

Stoichiometry, yes, contains a fair bit of math, but it's one of the most important decoders that we have as chemists.

play01:35

It's what we use to translate from the very small to the very big,

play01:40

to parley the stuff that we can't see into the stuff that we can.

play01:44

And because of that, chemists use it all the time.

play01:48

Including, yes, for sweetening your tea. Ow... hot. It's... it's quite hot.

play01:55

[Theme Music]

play02:05

Now if you've been with me for a couple of weeks, and I do hope you have, you're probably thinking to yourself,

play02:10

"Wait, wait, now, don't... don't we already have a way of measuring elements?"

play02:13

And you're right. We do.

play02:14

The real coin of the realm when it comes to measuring stuff in chemistry is relative atomic mass.

play02:19

The average atomic mass of all of the naturally occurring isotopes of a given element.

play02:24

So for example, all of the natural carbon on earth occurs as one of 3 and only 3 isotopes:

play02:30

C-12, C-13, and C-14.

play02:32

They all have six protons, but the number of neutrons vary.

play02:35

And these isotopes show up on our planet in totally different proportions.

play02:39

So the relative atomic mass of carbon is a weighted average of these three masses, which comes out to 12.01.

play02:46

But 12.01 what?

play02:48

Well, remember when we're talking about units of measurement, we're talking about arbitrary talk.

play02:53

Most, units, except for the ones that we use to measure time, aren't based on any real, objective value.

play02:58

We just pick a unit, like the kilogram, and we agree for a standard on what a kilogram is, and then we run with it.

play03:04

The same goes for atomic mass. We measure atomic mass in atomic mass units.

play03:08

We made them up, and the value for a single amu is -- bear with me now --

play03:12

1/12th of the mass of an atom of carbon-12.

play03:16

Why? Funny story.

play03:18

Until the mid-1800s, chemists in different parts of the world used different yardsticks for measuring elements.

play03:22

One of the most intuitive and therefore most common was to use the smallest, simplest element, hydrogen, as a base line.

play03:28

But in the 1850s, some chemists, led by German Wilhelm Ostwald, proposed using oxygen instead.

play03:34

They preferred oxygen mainly because it combined readily with so many other elements,

play03:38

so they figured it would be easier to determine the weights of lots of compounds.

play03:41

So a bunch of guys stroked their beards, agonized over this for years,

play03:45

until in 1903, they decided that atomic weight, as it was called, should be measured in 1/16ths of an oxygen atom.

play03:52

Until in 1912, isotopes were discovered and chemists realized that you can't talk about

play03:57

an element like it's all the same thing!

play03:59

It turned out there was an oxygen-16, and an oxygen-17, and an oxygen-18!

play04:03

And suddenly, everyone was walking around like, "I don't know how much this such weighs anymore!"

play04:07

This was so crazily disruptive that it took another 50 years of strokey-beard meetings

play04:12

for everyone to decide to use another standard -- carbon-12.

play04:15

Like oxygen, carbon is common, and kind of promiscuous, when it comes to what it bonds with.

play04:19

And since it has 12 protons and neutrons,

play04:21

the mass of other, similar elements would be expressed as some fraction of it.

play04:26

So, since 1961, science has pegged one amu as 1/12th of an atom of carbon-12.

play04:32

Which means that carbon has a relative atomic mass of 12.01 amu.

play04:37

Oxygen, 16 amu, and hydrogen, 1.008 amu. So that's how we way atoms.

play04:43

But, none of this solves my tea sweetening problem.

play04:46

Like, I don't know how many amus of these molecules together are going to make this taste good to me,

play04:51

or how many other molecules of sugar I can consume while maintaining my slim yet robust physique.

play04:56

This doesn't happen by itself, you know.

play04:58

And in order to make these calculations and predict reactions,

play05:00

I first need to be able to convert the atomic mass of this sugar, into a standard amount of substance.

play05:07

Not weight, not volume, just purely, objective amount of stuff. You heard me, stuff.

play05:13

That, my friends, is what moles are for. Not those moles, though those are nice-looking moles.

play05:19

A mole is arguably the most important unit in all of chemistry,

play05:23

because it allows us to express a chemical's atomic mass in terms of grams.

play05:26

And to define what a mole is, no matter what it's a mole of, we use our old standby, carbon-12.

play05:32

There are 6.022 x 1023 atoms in 12 grams of carbon-12,

play05:38

and by definition, that number of anything is a mole of that thing.

play05:42

That's a lot, and it is known as Avogadro's number, one of the most important constants in chemistry,

play05:48

and although Avogadro isn't the one that arrived at this number,

play05:51

it's named in his honor because he used this basic principle of comparing amounts of substances

play05:56

to first weigh atoms and molecules.

play05:58

So there are this many carbon atoms in a mole of carbon-12

play06:01

and there are the same number of anything in a mole of anything else.

play06:05

Like a dozen roses is twelve roses, but a mole of roses is 6.022 x 1023 roses,

play06:11

which would be enough roses to cover the surface of the earth quite deep.

play06:14

A mole of sand would be 6.022 x 1023 grains of sand and if they were each one millimeter long,

play06:20

a mole of them would stretch 100 quadrillion kilometers.

play06:25

So you get the picture, it's a big number, but in chemistry the thing to remember is this:

play06:30

a mole of any element contains 6.022 x 1023 atoms of that element no matter what.

play06:37

This is what lets us translate number of atoms into grams. It lets us weigh the elements.

play06:43

All right, follow me here.

play06:44

One mole of carbon-12 contains 6.022 x 1023 atoms and weighs 12 grams, right?

play06:49

So one mole of oxygen also contains 6.022 x 1023 atoms but because oxygen atoms are

play06:55

more massive it weighs 16 grams and you'll recall that oxygen's relative atomic mass is 16 amus.

play07:02

The number of atoms per mole remains the same,

play07:05

but the mass of a mole depends on the average mass of the element.

play07:08

This simply means that one mole of any element equals its relative atomic mass in grams.

play07:13

So now you've got it, 1 mole of hydrogen weighs 1.008 g, a mole of iron is 55.85 g,

play07:19

and a mole of natural carbon is 12.01 grams.

play07:23

This is known as an element's molar mass.

play07:25

And now that we know the molar mass of elements we can calculate the molar mass of any compound.

play07:30

All we have to do is add up the molar masses of its component elements.

play07:34

So for instance, the formula for this sugar or sucrose is C12H22O11.

play07:39

One mole of sucrose, by definition contains 6.022 x 1023 molecules,

play07:44

and since each molecule contains 12 carbon atoms and 22 hydrogen atoms and 11 oxygen atoms,

play07:50

then one mole of sucrose contains 12 moles of carbon, 22 moles of hydrogen, and 11 moles of oxygen.

play07:57

Multiply the number of moles of each element by its molar mass and add them all up,

play08:01

that's the molar mass of the whole compound.

play08:03

See, the mole is like our chemical Rosetta Stone;

play08:06

with it, we can translate anything from the level of atoms and molecules to the level of grams and kilograms.

play08:11

And we can use it to describe not only elements and compounds, but reactions.

play08:15

And you don't need a lab full of samples to do it, just a pencil and a calculator.

play08:20

To get back to my tea problem, let's say, y'know, hypothetically, that I'm watching my weight,

play08:24

so I want to know what it'll take for me to burn a certain amount of sugar that I consume.

play08:29

That's a reaction! And it's a pretty simple one.

play08:31

My body uses sucrose by combining it with oxygen to create energy plus CO2 and H20 as waste.

play08:37

You can write this out as an equation,

play08:38

in which the reactants combine on the left to yield the products on the right.

play08:41

But there's a problem here: this equation doesn't reflect chemical reality.

play08:45

During a reaction, bonds are broken and new ones are formed but the number of atoms of

play08:49

each element remains the same.

play08:50

The sugar and oxygen molecules may be busted apart and mixed up,

play08:53

but the number of each kind of atom that you start with ends up being exactly the same after the reaction.

play08:59

Conservation of mass, yo.

play09:00

So when writing a reaction out as an equation,

play09:02

the number of atoms of each element has to be exactly the same on both sides.

play09:06

Reconciling the reactants with the products is called equation balancing,

play09:10

and it's a good bit of what stoichiometry is all about.

play09:12

Because from a chemical perspective an unbalanced equation is pretty useless.

play09:16

It doesn't tell you how much is going in and how much is coming out.

play09:20

Without balancing the equation it's like saying,

play09:21

"When a mommy and a daddy love each other very much, a baby appears and that's all you need to know."

play09:26

But that's not all you need to know!

play09:27

So how do you do it? Not make a baby, balance an equation. I did biology last year.

play09:33

Well the best way is to start with the most complicated molecule, which in this case is,

play09:37

of course, the sucrose.

play09:39

For every molecule of sucrose that goes into the reaction, you know that you're gonna have 12 carbon atoms,

play09:43

so right off the bat you know that you're gonna have to end up with at least 12 molecules of CO2 as a product,

play09:49

because that's the only molecule where those carbon atoms end up.

play09:52

Now let's deal with the hydrogen,

play09:53

because that also shows up in only one molecule on both sides of the equation so that's easier.

play09:58

You know that at least 22 atoms of hydrogen go into the reaction

play10:01

and the product contains some multiple of 2 hydrogen atoms (that's the H2 in the water molecule).

play10:07

So if there were 11 water molecules produced,

play10:09

that would balance the hydrogen with 22 hydrogen atoms on each side.

play10:12

Finally, the oxygen.

play10:14

Since we know we have 12 CO2 molecules and 11 water molecules as products so far,

play10:19

we also know that we're gonna end up with thirty-five oxygen atoms.

play10:22

If you look at your reactants, on the left, you see that you have 11 oxygen atoms in the

play10:25

sucrose molecule and 2 in the molecular oxygen, O2.

play10:29

The carbon and hydrogen are balancing nicely with only one molecule of sucrose, so let's leave that alone.

play10:34

But there could be any number of paired oxygen atoms involved.

play10:36

Since you need 35 and you know you have 11 to start with in the sucrose,

play10:40

you just need 24 more, which would equal 12 molecules of O2.

play10:45

And now, the equation is balanced! You know exactly what my body is producing.

play10:48

For every molecule of sucrose I'm metabolizing I have to inhale 12 molecules of oxygen and in return,

play10:55

in addition to a little sugar buzz, I'll produce 12 molecules of carbon dioxide and 11 molecules of water.

play11:00

This is incredibly useful in helping us to understand the proportions of chemicals as they react at the molecular level.

play11:07

But in a lab, or in life, you have to work with measurable amounts of stuff,

play11:11

so the last stoichiometric trick you need up your sleeve is to calculate specific masses

play11:15

of the reactants and products.

play11:17

So for instance, how much oxygen will I need to inhale in order to burn 5 grams of sugar?

play11:21

To figure that out, we just need to focus on the left part of the equation,

play11:25

because we only need to quantify the reactants.

play11:27

First, convert your balanced equation into molar masses;

play11:30

in order to get from molecules to grams, you need to go through moles first.

play11:33

When you figure out the molar masses, you see that the ratio of sucrose to oxygen is actually pretty close:

play11:38

384 grams of oxygen for every 342.3 grams of sucrose.

play11:42

Then you simply compare this ratio to the masses of reactants in your experiment,

play11:46

5 grams of sugar to X grams of oxygen, and hopefully you know how to solve for X.

play11:52

For every 5 grams of sugar I ingest I'll need to inhale 5.6 grams of oxygen,

play11:57

which I happen to know is about 35 breaths' worth.

play12:00

So as long as I manage to stay alive for the next minute and a half or so,

play12:03

I'll manage to burn off this five grams of sugar. Down the hatch!

play12:07

Today, we learned about two of the most important units of measure in chemistry, atomic mass units and moles.

play12:12

We also learned how to calculate molar mass and how to balance a chemical equation and finally,

play12:16

we talked about how to use molar ratios to calculate the amount of stuff that goes in and out of a reaction.

play12:22

Thank you for watching this episode of Crash Course Chemistry,

play12:24

which was filmed, edited, and directed by Nick Jenkins.

play12:27

This episode was written by Blake de Pastino and edited Dr. Heiko Langner.

play12:30

Sound design was by Michael Aranda, and our graphics team is Thought Cafe.

Rate This

5.0 / 5 (0 votes)

Related Tags
Chemistry BasicsStoichiometryMolar MassAtomic StructureSucrose MetabolismConservation of MassChemical EquationsAvogadro's NumberElemental AnalysisEducational Content