Model Predictive Control of Boost Converter

Naki GÜLER
27 May 202330:46

Summary

TLDR本视频详细讲解了如何为Boost转换器设计模型预测控制(MPC)系统,重点是输入电流或输出电压控制。通过介绍系统参数、导出转换器的微分方程,视频逐步引导观众理解有限控制集模型预测控制和Boost转换器的基础知识。控制变量为电感电流,使用Euler前向方法进行预测。视频还深入分析了Boost转换器的电路模型,并根据开关状态推导出电感电流的导数方程。接着,通过Matlab Simulink演示了模型预测控制的编码过程,包括预测函数的编写、成本函数的确定以及最小化误差的策略。此外,还探讨了如何通过调整成本函数减少开关频率,以及如何利用PI控制器间接控制输出电压,最后通过动态调节PI控制器参数以优化系统性能。

Takeaways

  • 🔌 设计了一个用于Boost转换器的模型预测控制(MPC),专注于输入电流或输出电压的控制。
  • 📈 引入了系统参数和转换器的导数方程,这是理解和设计MPC的基础。
  • 🛠️ 讨论了有限控制集模型预测控制的概念,并将其应用于Boost转换器,以电感电流作为控制变量。
  • 🔢 使用Euler前向方法对控制变量进行预测,提供了预测功能的数学表达式。
  • ⚙️ 分析了Boost转换器的电路模型,强调了开关状态对电路分析的重要性,并导出了两个可能的开关状态下的电感电压函数。
  • 📊 提出了成本函数(误差函数),用于评估电感电流的预测值与参考值之间的偏差。
  • 🔍 通过最小化成本函数来寻找最优开关状态,这是MPC策略的核心。
  • 💻 展示了如何在Matlab Simulink中实现MPC,包括预测函数和最小化误差的过程。
  • 🎛️ 引入了一个新的成本函数来控制开关频率,通过调整权重因子来平衡系统性能与开关频率。
  • 🔋 展示了如何设计输出电压控制,包括PI控制器的应用以产生电感电流参考,从而间接控制输出电压。
  • 📝 讨论了PI控制器参数的手动调整过程,以及如何通过实验确定这些参数以优化系统的动态响应。

Q & A

  • 什么是模型预测控制?

    -模型预测控制(MPC)是一种先进的控制策略,用于实时调节复杂系统的性能。通过对系统未来行为的预测,以及通过优化控制输入来最小化某个成本函数,MPC能够有效地控制系统输出。

  • 为什么在设计升压转换器时选择使用模型预测控制?

    -模型预测控制能够提供对升压转换器的精确控制,尤其是在处理输入电流或输出电压控制时。通过预测和优化控制变量(如电感电流),MPC能够提高转换器的性能和效率。

  • 在模型预测控制中,成本函数的作用是什么?

    -在模型预测控制中,成本函数用于衡量系统当前状态与期望状态之间的偏差。通过最小化成本函数,控制策略能够确定最优的控制动作,以达到期望的系统性能。

  • 使用欧拉前向法有什么优势?

    -使用欧拉前向法可以简化对控制变量(如电感电流)未来值的预测,该方法通过当前状态的导数估计未来状态,适用于实时控制系统中的近似计算,提高了计算效率。

  • 升压转换器有哪些可能的开关状态?

    -升压转换器有两种可能的开关状态:开(S=1)和关(S=0)。这两种状态改变了电路图,从而影响电感电压和电流的计算。

  • 什么是电感电流的预测函数,并且它是如何派生的?

    -电感电流的预测函数基于电感电流的导数以及系统参数(如采样时间和电感电流的当前测量值)计算电感电流的未来值。该函数通过将电感电流的导数方程整合进预测模型来派生。

  • 在MPC中如何实现开关状态的优化选择?

    -在MPC中,通过计算每个可能的开关状态下的成本函数值,并选择使成本函数最小化的开关状态,实现对开关状态的优化选择。这涉及到评估所有可能状态下的预测误差,并选择误差最小的状态。

  • 为什么要在成本函数中添加对开关频率的考虑?

    -在成本函数中添加对开关频率的考虑,可以控制升压转换器的开关频率,从而减少开关损耗和电磁干扰。通过调节开关频率,可以优化转换器的性能和效率。

  • PI控制器在输出电压控制中的作用是什么?

    -PI控制器在输出电压控制中用于生成基于输出电压误差的电感电流参考值。通过调整PI控制器的参数,可以优化系统的动态响应,实现对输出电压的精确控制。

  • 为什么要手动调节PI控制器参数,而不使用自动化方法?

    -作者选择手动调节PI控制器参数,可能是因为手动调节可以根据具体应用和系统动态特性进行更精细的控制。虽然自动化方法可以简化调节过程,但在某些情况下,手动调节能够提供更高的灵活性和性能优化。

Outlines

00:00

🔌 提升变换器的模型预测控制设计概述

本段介绍了设计提升变换器的模型预测控制(MPC)的基本步骤。首先,强调了设计MPC的必要性,即为了对输入电流或输出电压进行控制。接着,提到了设计过程需要系统参数、变换器的导数方程,以及如何通过有限控制集模型预测控制来实现。详细解释了如何使用欧拉前向法对控制变量(电感电流)进行预测,包括如何根据开关状态分析变换器的行为,并导出了电感电流的预测方程。

05:02

🔄 模型预测控制的实现和系统变量定义

在这一部分中,详细介绍了模型预测控制(MPC)的实现步骤,包括预测函数的编写、系统变量的定义(如采样时间、电感和电感内阻),以及如何根据可能的开关状态来评估这个函数。通过使用循环遍历所有可能的开关状态,介绍了如何计算每种状态下的预测电感电流,并进一步说明了如何通过比较这些预测值与参考值之间的误差来选择最优的开关状态,从而实现对电感电流的控制。

10:02

🔍 最小化误差和优化开关状态的选择

本段深入探讨了如何通过最小化误差函数来优化开关状态的选择。首先定义了一个初始的高误差值,然后通过比较不同开关状态下的预测误差来逐步找到最小误差,从而确定最优的开关状态。这个过程包括了如何根据误差函数的结果来动态调整开关状态,以实现对电感电流的精确控制,并通过模拟实验验证了控制算法的有效性。

15:15

🛠️ 控制策略的改进与开关频率的调节

这一段讨论了通过引入一个额外的成本函数来改进控制策略,以降低开关频率并优化系统性能。详细说明了如何通过比较当前和之前的开关状态来调整开关频率,以及如何通过调整权重因子来平衡误差最小化和开关频率降低之间的关系。此外,展示了通过调整权重因子来观察开关频率变化的效果,并指出了调节开关频率以满足不同应用需求的重要性。

20:21

📉 输出电压控制设计与PI控制器的应用

介绍了输出电压控制设计的过程,特别是如何使用PI控制器根据输出电压误差生成电感电流的参考值。详细讨论了PI控制器参数的选择和调整,以及如何通过对输出电压和电感电流的参考值进行实时调整来达到所需的控制目标。同时,也提到了如何通过调整PI控制器的参数来优化系统的动态响应,以及如何通过实验验证控制策略的有效性。

25:23

🔄 动态响应优化与PI控制器参数调整

本段重点介绍了通过调整PI控制器参数来优化系统的动态响应,特别是如何通过实验来找到最佳的参数设置,以减少超调和提高系统的稳定性。详细描述了调整过程中观察到的系统行为变化,包括输出电压和电感电流的变化,以及如何通过细致的参数调整来达到更好的控制效果。

30:26

🎓 结论与感谢

在最后一段中,作者总结了视频的主要内容,包括模型预测控制(MPC)的设计和实现过程,以及通过调整控制参数来优化系统性能的重要性。同时,向观众表示了感谢,鼓励他们应用这些知识来解决实际问题,并提供了进一步学习和研究的建议。

Mindmap

Keywords

💡模型预测控制

模型预测控制(MPC)是一种先进的过程控制方法,通过对系统未来行为的预测和优化来实现对系统的控制。在视频中,MPC用于控制Boost转换器的输入电流或输出电压。通过建立控制对象(如电感电流)的数学模型,MPC可以预测未来的系统行为,并计算出使系统性能达到最优的控制策略。

💡Boost转换器

Boost转换器是一种将输入电压提升到更高输出电压的DC-DC转换器。视频中提到的设计MPC是为了控制这种转换器的输入电流或输出电压。Boost转换器在电源管理和可再生能源系统中广泛应用,因其能有效地提高电压水平。

💡电感电流

电感电流是通过电感器的电流。在视频中,电感电流作为Boost转换器的控制变量,需要被精确控制以达到预定的输出电压或电流要求。电感电流的预测和控制是实现高效能量转换的关键。

💡误差函数

误差函数(或成本函数)在MPC中用于衡量实际输出与期望输出之间的差异。视频中通过计算电感电流的实际值与参考值之间的误差,来调整控制策略,以最小化这一误差,达到期望的控制效果。

💡欧拉前向法

欧拉前向法是一种数值微分方程的求解方法,用于近似预测控制变量的变化。视频中利用这种方法来预测电感电流的变化,为实现对Boost转换器的有效控制提供了一种计算手段。

💡开关状态

开关状态指的是Boost转换器中开关的导通与截止状态。视频中分析了转换器在不同开关状态下的电路模型,进而推导出电感电流的变化规律。开关状态的不同组合直接影响了转换器的工作性能。

💡采样时间

采样时间是控制系统中采集数据的时间间隔。视频中提到的采样时间对MPC的设计至关重要,它影响到控制策略的更新频率和系统的响应速度。合适的采样时间可以确保系统既稳定又具有良好的动态性能。

💡最小化误差

最小化误差是MPC设计中的一个核心目标,旨在通过调整控制策略,使得系统输出与目标值之间的误差最小。视频中通过计算不同控制策略下的成本函数值,选择使误差最小的策略作为最优控制动作。

💡PI控制器

PI控制器是一种常见的反馈控制器,包含比例(P)和积分(I)两个部分。视频中通过使用PI控制器来生成基于输出电压误差的电感电流参考值,从而间接控制Boost转换器的输出电压。这种方法能有效调节系统至期望状态。

💡切换频率

切换频率指的是Boost转换器中开关元件导通与截止转换的频率。视频中讨论了如何通过调整成本函数来控制切换频率,以降低能耗和提高转换效率。切换频率的优化是提高电力电子设备性能的重要方面。

Highlights

Introduction to model predictive control for boost converters.

Discussion on system parameters and derivation of the converter's equation.

Explanation of finite control set model predictive control.

Detailing the control variable as inductor current in boost converters.

Use of Euler's method for predicting control variable.

Analysis of boost converter circuit depending on switching state.

Derivation of inductor current's derivative equation from circuit functions.

Integration of predictive function into Matlab Simulink for modeling.

Design of the predictive function for inductor current.

Setting up system variables for the predictive control model.

Minimization process in model predictive control to find optimum switching state.

Introduction to cost function in model predictive control.

Dynamic response analysis of the controller to changes in reference current.

Adjustment of switching frequency to improve controller performance.

Design of output voltage control using PI controller in model predictive control.

Tuning of PI controller parameters to achieve desired output voltage response.

Transcripts

play00:00

foreign

play00:02

in this video I will show the design of

play00:06

model predictive control for Boost

play00:08

converter

play00:10

here the conventional boost converter

play00:16

we have to design a model predictive

play00:19

control for

play00:22

input current or output voltage control

play00:25

of push converter

play00:28

so first we need system parameters we

play00:33

need a derivative equation of the

play00:36

converter

play00:39

I'll try to talk about about finite

play00:42

control set model predictive control and

play00:44

boost converter

play00:48

our control variable is inductor current

play00:50

so input currents of the

play00:53

[Music]

play00:54

post converter and we need the error

play00:58

function or cost function in the model

play01:00

predictive control here this is the

play01:03

inductor current reference it is a

play01:06

constant value

play01:08

so it is DC quantity and this is the

play01:12

predicted value of the inductor current

play01:16

uh we need the prediction of the control

play01:21

variable here we can use Euler's forward

play01:25

method for approximation

play01:27

Define it here

play01:29

we need this part of the equation so the

play01:33

final equation is this

play01:36

here IL is the measured value of the

play01:39

inductor currents we will measure it and

play01:42

TS is the sampling time of the control

play01:46

algorithm and this is the derivative of

play01:50

the control variable so the derivative

play01:52

of inductor current

play01:55

so now we need the red part of the

play01:59

equation we have to analyze the Boost

play02:01

converter

play02:03

the circuit model of the post converter

play02:06

here

play02:07

we can analyze the Boost converter

play02:09

depending on the switching State because

play02:12

the the series Vision State change the

play02:17

circuit diagram

play02:19

so we have two possible switching States

play02:23

as can be one or zero so as can be on

play02:29

positioned or off position

play02:33

here the circuit diagram for uh s

play02:37

1

play02:39

in this case the inductor voltage is

play02:42

equal to difference between input

play02:45

voltage and voltage drop on RL RL is the

play02:49

internal resistance of the inductor

play02:52

so we can get such a function for

play02:56

inductor voltage so ldi ldi DT is equal

play03:03

to the difference between these two

play03:05

volume and also when s is off positioned

play03:10

we can get such a circuit diagram and uh

play03:15

the

play03:17

inductor voltage is equal to this

play03:21

equation

play03:23

okay now we have

play03:26

these two functions we can put as

play03:31

for S is equal to 1 when s is on

play03:35

position it

play03:38

the equation will be effective when is s

play03:41

is of position of the equation will be

play03:45

effective on the total system so we can

play03:50

get the uh derivative of inductor

play03:53

current by combining these two equations

play03:56

and we have such a function uh for the

play04:00

derivative of the control variable

play04:04

then we can put this derivative equation

play04:08

into the prediction function and finally

play04:13

we can get such a function for the

play04:16

for prediction of the in inductor

play04:19

current

play04:21

okay now we can design

play04:26

it in the uh

play04:28

Matlab simulink

play04:31

this is our

play04:33

prediction function

play04:35

and we need

play04:41

laptop function

play04:46

below

play04:47

I will write code for the model

play04:50

predictive control

play04:54

name is NPC boost

play04:58

this is the output variable we need the

play05:01

switching

play05:02

[Music]

play05:04

State for the output and

play05:08

we will write

play05:10

the input of this below

play05:14

so first we can write the predictive

play05:17

function

play05:20

like

play05:21

here

play05:23

IL K1

play05:32

and

play05:33

[Music]

play05:36

be in

play05:45

1 minus s

play05:49

and plus

play05:52

I

play05:57

okay now we have to Define system

play06:00

variables this is the sampling time 10

play06:05

microseconds

play06:11

and one

play06:13

Milli Henry inductor and the resistance

play06:18

of the inductor is 0.2 ohm

play06:24

and we have to measure inductor currents

play06:29

input voltage

play06:34

output voltage

play06:41

okay

play06:44

so

play06:45

the equation is dependent on the

play06:48

savaging state

play06:49

but to evaluate this function

play06:55

we have to use these two options here

play06:59

if s can be 1 and S can be zero I am

play07:04

defining the series impossible switching

play07:07

States

play07:08

Vector here

play07:11

B1 and 0.

play07:15

and instead of using uh the actual

play07:19

switching State we have to try it we

play07:24

have the related depending on the

play07:26

possible switching state

play07:28

I'm defining and

play07:30

here and I will put this function into a

play07:34

for Loop and

play07:37

starts one and end

play07:40

to

play07:45

okay

play07:47

now this is our predictive function and

play07:55

we have to put one more

play07:58

okay

play08:00

this is our prediction function

play08:04

here

play08:05

we can obtain the predicted value of the

play08:08

inductor current with this equation

play08:10

then I'm returning back to the cost

play08:14

function

play08:16

the cost function is G is equal to

play08:19

inductor current reference difference

play08:21

between inductor current reference and

play08:23

the predicted value

play08:25

G absolute error

play08:30

IL ref minus

play08:35

ilk1

play08:36

yeah

play08:38

okay now we have to know the reference

play08:42

of the inductor current

play08:47

now we obtain the

play08:49

cost function

play08:55

this is our cost function

play08:58

and the control methods Works depending

play09:01

on

play09:02

finding the minimum error

play09:06

in the steady state the error

play09:10

should be zero

play09:12

in a real application it will not be

play09:16

zero but it the errors will turn around

play09:20

to zero

play09:21

so it means that we have to find which

play09:25

option options are here

play09:29

which options gives less error so

play09:34

I will write the minimization part

play09:40

here we are calculating

play09:43

the error in in the cost function

play09:46

and if the calculated error is less than

play09:52

Optimum

play09:54

G

play09:56

uh

play09:58

we can determine depending on the list

play10:01

less error by using such a minimization

play10:04

here

play10:06

and

play10:08

of is equal to

play10:11

n and g o will be equal to

play10:15

G

play10:19

okay

play10:21

we have to Define initial value of jio I

play10:26

am defining a big value for G of 1 A6

play10:31

so why I am defining such a big value

play10:34

for example when the surging State

play10:38

when the for Loop evaluates the one and

play10:43

is

play10:45

here

play10:47

will be 1 and we will get a cost value

play10:51

it will be less than one E6

play10:54

okay the control algorithm will

play10:58

determine the first Optimum value

play11:01

depending on switch one then in the

play11:04

second option the second option is uh

play11:09

zero it will be zero then it will get it

play11:13

will give a different value here

play11:18

as a result of cost function the control

play11:21

method the minimization part will check

play11:24

this

play11:26

which option so when servicing State

play11:29

when switching state is one the error

play11:33

for example one amps

play11:35

after the switching state

play11:39

we are calculating the second option

play11:43

then if we get less error than 1 amps

play11:47

one amp

play11:48

the result will be two so the optimum

play11:52

sevision state will be 2 as a result of

play11:56

such evaluation and we can generate the

play12:00

uh

play12:02

signal depending on this

play12:05

Evolution

play12:06

and here

play12:11

the optimum switching state is

play12:13

determined here I am putting it into the

play12:16

result function but we have to Define

play12:20

the initial value of the

play12:24

and we can write one it is not important

play12:29

because

play12:30

the equations will evaluate the function

play12:33

and it will get we will get some result

play12:37

depending on this

play12:43

okay now I'm returning back to uh

play12:47

simonink

play12:49

we have to put

play12:52

required measured and reference

play12:54

variables

play12:57

and we

play13:14

this is the reference

play13:17

and

play13:19

at the output of the

play13:23

model predictive control we will get the

play13:25

switching State directly

play13:28

we will not use any modulation strategy

play13:31

it will generate directly saving

play13:33

position and we can put

play13:37

some logic to here

play13:43

to convert this Boolean type

play13:53

okay it seems ready we can run the

play13:57

software

play13:59

okay

play14:02

yes it is regulated to reference

play14:06

five amps

play14:08

here

play14:09

the red one is the reference of the

play14:12

inductor current defined here and W1 is

play14:16

the measured value of the inductor

play14:18

current and

play14:21

this is the output voltage and this is

play14:24

the blue one is the input voltage

play14:28

okay now we can change the

play14:33

in Dr current reference

play14:35

but before I want to change

play14:39

time scale

play14:58

okay we can check the dynamic response

play15:00

of the controller

play15:14

okay here the reference current is

play15:18

changed from 5 amps to 10 amps

play15:21

it is directly increasing to 10 amps

play15:25

but here we can analyze

play15:29

yeah

play15:32

the results show that

play15:34

on the solution frequency is very high

play15:36

the solution frequency is equal to half

play15:40

of the sampling time

play15:42

the sample frequency half of the

play15:44

sampling preferencing so it is not

play15:48

acceptable for many applications and the

play15:52

accuracy of the controller

play15:54

[Music]

play15:56

may not good in such implementation so

play16:01

we need to

play16:04

we need to reduce the switching

play16:05

frequency to get proper operation

play16:10

to do this we need a

play16:14

one more

play16:15

[Music]

play16:16

cost function

play16:19

to reduce the sewaging frequency we can

play16:23

change it

play16:24

Gil

play16:26

and we can Define one of

play16:30

cost function for the Civil engine state

play16:36

now I will Define then I will explain

play16:41

this is our new

play16:51

the previous value

play16:55

the switch in the cost function

play16:59

calculates the difference between the

play17:01

evolution

play17:02

State and the

play17:06

actual civilian state so

play17:10

as a result of such a cost function we

play17:13

will get one or zero

play17:16

n minus 1.

play17:18

because of ABS the result of GSW will be

play17:24

equal to 0 or

play17:25

1. defining such a

play17:31

cost function will change the uh with a

play17:36

low amount so it means that for example

play17:39

up the current errors reached for

play17:42

example 5.6 amp it allows to keep the

play17:46

solution position

play17:48

at the previous value

play17:51

if the error will reach out of the bond

play17:54

Define Bond I will show defined Bond

play17:59

it will allow to change the surging

play18:01

position

play18:04

in that case in that case the solution

play18:07

frequency will reduce because for

play18:10

example if the serving states start here

play18:12

up to here the civilian State cannot be

play18:15

changed after here it can change so it

play18:18

will

play18:20

it will change depending on the defined

play18:23

value now we need the total cost

play18:26

function to minimize the error we can

play18:30

write the total cost function here

play18:32

[Music]

play18:33

Gil Plus

play18:38

saving and we need to awaiting Factor

play18:42

here the waiting Factor

play18:46

adjust the weight of the jsw on the

play18:51

total cost function

play18:52

we can select any value there and it

play18:57

will be effective on the

play18:59

on the Savior frequency

play19:03

but now we need one more variable here

play19:07

as old is equal to

play19:09

as the previous volume it will be

play19:12

previous value and

play19:15

as old will store the

play19:17

[Music]

play19:19

as while you're here so we need

play19:22

persistent

play19:24

variable

play19:26

assault and if

play19:33

foreign

play19:48

we can return back to uh

play19:50

simulink we have to Define weight and

play19:53

Factor

play20:00

okay first I'm defining zero it means

play20:04

that the

play20:06

second post variable will not effective

play20:09

on the system then I will change and we

play20:14

will observe the value

play20:21

thank you

play20:31

okay now waiting factor is zero and the

play20:37

switching frequency

play20:40

is the same as

play20:42

previous

play20:45

so it is equal to half of sampling time

play21:02

we can Define any value here to here but

play21:09

it will change the inductor current

play21:12

Ripple here for example first I will try

play21:15

0.5

play21:25

at this point it is changed to 0.5

play21:35

yes

play21:38

now we can see that the solution

play21:42

frequency is changed

play21:44

because the period is larger than

play21:49

this part

play21:50

so we can control the

play21:54

switching frequency here

play21:57

now we can try some different value

play22:10

for example zero point three

play22:16

okay

play22:18

the inductor current triple is reduced

play22:20

it means that sewaging frequency is

play22:22

higher than this part

play22:24

and a solution frequency is less than

play22:27

this part okay

play22:29

we can adjust it and I have a solution

play22:33

about this

play22:36

it is published in one of our papers I

play22:40

don't want to talk about more this if

play22:43

you want to control switching frequency

play22:46

you can check the the analysis in the

play22:51

in our paper

play22:59

now I would like to show the output

play23:02

voltage control design of output voltage

play23:05

control

play23:06

and

play23:07

I will indirectly control the output

play23:09

voltage so I will put a pi controller to

play23:14

generate inductor current reference

play23:16

depending on the output voltage error

play23:20

okay

play23:23

this is PID controller

play23:32

it discrete time and pi and you can

play23:38

enter the

play23:40

[Music]

play23:42

KP and Ki value

play23:45

and

play23:56

also I'd like to talk about the

play24:01

Pi controller the selection of Pi

play24:04

controller parameters I am tuning

play24:06

manually I'm not using any methods you

play24:10

can find any method in the literature

play24:12

you can check but I am not using

play24:17

with the methods

play24:20

and we need the error between output

play24:23

voltage and its reference

play24:28

and

play24:32

we have to compare it

play24:43

this is way out and

play24:51

can define v ref

play24:54

and we can select 48

play24:59

volt

play25:10

okay now such a control method the pi

play25:13

controller will generate a reference

play25:17

current and the model predictive control

play25:20

will provide the inductor current

play25:22

voltage interactor current

play25:24

in the output side

play25:27

so I would like to put

play25:30

one more variable to here

play25:37

if

play25:55

okay

play25:56

we will tune the pi controllers first I

play26:01

want to check the result

play26:05

okay

play26:09

the red one is the reference of input

play26:12

output voltage

play26:15

so it is regulated its reference

play26:19

the inductor current reference is around

play26:22

4 amps

play26:24

it's about 4 amps and we can change for

play26:28

example 60 volt

play26:39

we can check the transition time

play26:43

foreign

play26:48

results

play26:52

but when I'm tuning the controller

play26:56

[Music]

play27:01

I will put a pulse

play27:07

generator

play27:17

I will create a step a change

play27:29

into

play27:46

24

play27:48

Plus 36.

play27:55

so it means that the output voltage

play27:58

reference will change between 36 and 60

play28:03

volts

play28:04

[Music]

play28:06

and now we can run it again we will turn

play28:10

this value and we have to change the

play28:13

time range

play28:19

okay

play28:23

this is not uh

play28:26

it seems not good we have to increase

play28:29

the dynamic response of the

play28:31

pi controller

play28:34

you can increase it

play28:36

for example

play28:38

to any

play28:41

yes it is better than before we can

play28:45

increase it

play28:47

we have to increase it up to show up to

play28:50

see uh opposite overshot

play28:54

for example

play28:56

100 we can try yes

play29:07

bullshits in both inductor current and

play29:10

also in the output voltage so we can

play29:15

select the radius and the volume

play29:18

we can try 90

play29:23

we have our should

play29:27

okay

play29:37

we have small

play29:40

I think this is

play29:42

good but we can reduce it

play29:49

okay and we can slightly increase it

play29:55

yes

play29:57

and I would write 80 again

play30:09

thank you

play30:14

in the inductor current we have still

play30:17

overshoot and undershoot

play30:21

but

play30:22

here there is no too much overshoot and

play30:25

undershoot

play30:28

if the result is enough

play30:30

[Music]

play30:31

for you you can use these value as

play30:34

defined here

play30:41

okay thank you so much for watching my

play30:44

videos

Rate This

5.0 / 5 (0 votes)

Related Tags
模型预测控制Boost变换器电流控制电压控制系统参数控制算法Matlab仿真PI控制器动态响应控制策略
Do you need a summary in English?