Bunga Majemuk dan Anuitas
Summary
TLDRThis video explains the concepts of compound interest and annuities, providing clear examples and step-by-step calculations. It starts by describing how compound interest works, using examples to show how interest accumulates over time. The video then introduces a formula for calculating compound interest, followed by an example of calculating the value of an investment over a period of years. It also covers the concept of annuities, explaining how equal periodic payments are calculated. The video concludes with practical examples to illustrate both topics, helping viewers understand how to apply these financial principles in real-life scenarios.
Takeaways
- đ Compound interest is calculated not only on the initial principal but also on the accumulated interest from previous periods.
- đ The formula for compound interest is M_n = M_0 Ă (1 + i)^n, where M_n is the final amount, M_0 is the initial principal, i is the interest rate per period, and n is the number of periods.
- đ For compound interest calculations, the interest rate should be converted to a decimal form before applying it in the formula.
- đ In compound interest, as the number of periods increases, the interest accumulates faster due to the compounding effect.
- đ To calculate the final balance after multiple periods with compound interest, use the formula and apply the rate to the updated balance each time.
- đ Annuities involve equal payments made at regular intervals, which consist of both interest and principal parts.
- đ The formula for annuities is A = M Ă (i / (1 - (1 + i)^(-n))), where A is the amount to be paid per period, M is the amount borrowed or purchased, i is the interest rate per period, and n is the number of periods.
- đ Annuities are commonly used in installment payment systems, such as paying for products over time with interest.
- đ Compound interest can be applied to savings, where the balance grows over time, and to loans, where the amount owed increases as interest compounds.
- đ Annuity calculations are useful for determining how much needs to be paid regularly for loans or purchases, ensuring equal payments each period.
- đ When calculating compound interest for long periods, itâs easier to use the formula rather than calculating interest for each period manually.
Q & A
What is compound interest and how does it differ from simple interest?
-Compound interest is the interest calculated on both the initial principal and the accumulated interest from previous periods. Unlike simple interest, which is calculated only on the principal, compound interest grows exponentially because it compounds over time.
What is the formula for calculating compound interest?
-The formula for compound interest is: M = P Ă (1 + r/100)^n, where M is the final amount, P is the principal, r is the interest rate, and n is the number of periods.
How do you calculate the balance after 3 periods using compound interest?
-For compound interest over 3 periods, the interest for each period is calculated on the new balance from the previous period. For example, if the initial principal is 1,000,000 IDR and the interest rate is 5%, the balance after 3 years would be 1,156,510 IDR.
In the compound interest example, what was the final amount after 3 periods?
-In the compound interest example, the final amount after 3 periods (years) was 1,156,510 IDR, starting from 1,000,000 IDR with a 5% annual interest rate.
What happens when the interest rate or the number of periods changes in compound interest calculations?
-Increasing the interest rate or the number of periods will result in a higher final amount because compound interest grows faster with a higher rate or more time. The formula takes both these factors into account.
What is an annuity, and how is it different from compound interest?
-An annuity is a series of equal payments made at regular intervals. Unlike compound interest, which involves the growth of an initial investment, an annuity involves periodic payments with both principal and interest, often used for loans or structured payments.
What is the formula for calculating annuities?
-The formula for calculating annuities is: A = P Ă (r / (1 - (1 + r)^-n)), where A is the payment per period, P is the principal, r is the periodic interest rate, and n is the number of periods.
How do you calculate the monthly payment for a loan using the annuity formula?
-To calculate the monthly payment, use the annuity formula with the principal, interest rate, and number of periods. For example, if the principal is 500,000 IDR, the monthly interest rate is 3%, and the loan term is 6 months, the monthly payment would be 92,000 IDR.
What is the importance of converting the interest rate to a decimal in both compound interest and annuity calculations?
-Converting the interest rate to a decimal makes the calculations easier. For example, 5% becomes 0.05, which can then be used in formulas like M = P Ă (1 + r/100)^n or A = P Ă (r / (1 - (1 + r)^-n)) to calculate the final amount or payment.
In the annuity example, what was the monthly payment for Fika's loan for shoes?
-In the annuity example, Fikaâs monthly payment for her 500,000 IDR shoe loan, with a 3% monthly interest rate and a 6-month term, was 92,000 IDR.
Outlines
Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantMindmap
Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantKeywords
Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantHighlights
Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantTranscripts
Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantVoir Plus de Vidéos Connexes
BUNGA MAJEMUK DAN ANUITAS
Kelas XI - Matematika Keuangan Part 1 - Bunga Tunggal dan Bunga Majemuk
Bunga majemuk dan anuitas kelas XI | Matematika
LESSON 5: Compound Interest (Finding for the Principal, Future Value, and Time)
Aptitude Preparation for Campus Placements #10 | Simple Interest | Quantitative Aptitude
TVM, Time Value of Money full chapter, Compounding, Discounting method, Business finance, Capital
5.0 / 5 (0 votes)