Inverse trig functions: arcsin | Trigonometry | Khan Academy
Summary
TLDRThe video script explains the concept of sine and arcsine (inverse sine) functions using the unit circle and right-angle triangles. It walks through solving for the sine of π/4 (or 45°), showing that it equals √2/2, and then discusses how to find the arcsine of a value, specifically √2/2 and -√3/2. The process involves solving triangles and using radians, explaining the need to restrict the range of the arcsine function to ensure it's valid. The script also highlights verifying results with a calculator.
Takeaways
- 🔢 The sine of pi over 4 radians (45 degrees) is the square root of 2 over 2.
- 📐 The sine function refers to the y-coordinate on the unit circle for a given angle.
- 🔄 The arcsine function (or inverse sine) asks for the angle whose sine is a given value.
- ✖️ Multiple angles can give the same sine value, so the arcsine function must have a restricted range to be valid.
- 📏 The range for the arcsine function is restricted to angles between -pi/2 and pi/2 radians (first and fourth quadrants).
- ⬆️ The domain for the arcsine function is restricted to values between -1 and 1, as those are the possible outputs of the sine function.
- 🔺 The triangle used for pi over 4 radians is an isosceles 45-45-90 triangle.
- 🔍 The sine of an angle provides the height (y-coordinate) on the unit circle, and arcsine finds the angle from this height.
- 📉 The arcsine of a negative value, like -sqrt(3)/2, results in a negative angle, which falls in the fourth quadrant.
- 📏 In a 30-60-90 triangle, the side opposite the 60-degree angle is sqrt(3)/2, which helps find the arcsine of -sqrt(3)/2 as -pi/3 radians.
Q & A
- What is the sine of pi over 4 in radians?- -The sine of pi over 4 radians (which is equivalent to 45 degrees) is the square root of 2 over 2. 
- How is the sine of an angle determined on the unit circle?- -The sine of an angle is defined as the y-coordinate of the point on the unit circle corresponding to that angle. 
- What is the value of sine for a 45-degree angle in a 45-45-90 triangle?- -In a 45-45-90 triangle, the sine of the 45-degree angle is equal to the length of the opposite side, which is the square root of 2 over 2. 
- What does 'arcsine' or 'inverse sine' represent?- -The arcsine or inverse sine of a value is the angle whose sine is equal to that value. For example, arcsine of the square root of 2 over 2 equals pi over 4. 
- Why must the range of the arcsine function be restricted?- -To make the inverse sine a valid function, its range is restricted to avoid multiple angles producing the same sine value. The standard range for arcsine is between -pi/2 and pi/2 radians. 
- What is the domain of the arcsine function?- -The domain of the arcsine function is limited to values between -1 and 1 because sine of any angle only produces results within this range. 
- What is the arcsine of negative square root of 3 over 2?- -The arcsine of negative square root of 3 over 2 is equal to negative pi over 3 radians. 
- How do you calculate angles from sine values in radians?- -To calculate angles from sine values in radians, you use the inverse sine (arcsine) function. For example, the arcsine of negative square root of 3 over 2 gives negative pi over 3 radians. 
- Why does adding multiples of 2pi to an angle give the same sine value?- -Since sine is periodic with a period of 2pi, adding multiples of 2pi to an angle brings you to the same position on the unit circle, giving the same sine value. 
- What triangle type is involved when sine equals square root of 3 over 2?- -A 30-60-90 triangle is involved when sine equals the square root of 3 over 2. The angle opposite the side of length square root of 3 over 2 is 60 degrees, or pi over 3 radians. 
Outlines

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantMindmap

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantKeywords

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantHighlights

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantTranscripts

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.
Améliorer maintenantVoir Plus de Vidéos Connexes
5.0 / 5 (0 votes)





