Inverse trig functions: arcsin | Trigonometry | Khan Academy

Khan Academy
1 Oct 200910:35

Summary

TLDRThe video script explains the concept of sine and arcsine (inverse sine) functions using the unit circle and right-angle triangles. It walks through solving for the sine of π/4 (or 45°), showing that it equals √2/2, and then discusses how to find the arcsine of a value, specifically √2/2 and -√3/2. The process involves solving triangles and using radians, explaining the need to restrict the range of the arcsine function to ensure it's valid. The script also highlights verifying results with a calculator.

Takeaways

  • 🔢 The sine of pi over 4 radians (45 degrees) is the square root of 2 over 2.
  • 📐 The sine function refers to the y-coordinate on the unit circle for a given angle.
  • 🔄 The arcsine function (or inverse sine) asks for the angle whose sine is a given value.
  • ✖️ Multiple angles can give the same sine value, so the arcsine function must have a restricted range to be valid.
  • 📏 The range for the arcsine function is restricted to angles between -pi/2 and pi/2 radians (first and fourth quadrants).
  • ⬆️ The domain for the arcsine function is restricted to values between -1 and 1, as those are the possible outputs of the sine function.
  • 🔺 The triangle used for pi over 4 radians is an isosceles 45-45-90 triangle.
  • 🔍 The sine of an angle provides the height (y-coordinate) on the unit circle, and arcsine finds the angle from this height.
  • 📉 The arcsine of a negative value, like -sqrt(3)/2, results in a negative angle, which falls in the fourth quadrant.
  • 📏 In a 30-60-90 triangle, the side opposite the 60-degree angle is sqrt(3)/2, which helps find the arcsine of -sqrt(3)/2 as -pi/3 radians.

Q & A

  • What is the sine of pi over 4 in radians?

    -The sine of pi over 4 radians (which is equivalent to 45 degrees) is the square root of 2 over 2.

  • How is the sine of an angle determined on the unit circle?

    -The sine of an angle is defined as the y-coordinate of the point on the unit circle corresponding to that angle.

  • What is the value of sine for a 45-degree angle in a 45-45-90 triangle?

    -In a 45-45-90 triangle, the sine of the 45-degree angle is equal to the length of the opposite side, which is the square root of 2 over 2.

  • What does 'arcsine' or 'inverse sine' represent?

    -The arcsine or inverse sine of a value is the angle whose sine is equal to that value. For example, arcsine of the square root of 2 over 2 equals pi over 4.

  • Why must the range of the arcsine function be restricted?

    -To make the inverse sine a valid function, its range is restricted to avoid multiple angles producing the same sine value. The standard range for arcsine is between -pi/2 and pi/2 radians.

  • What is the domain of the arcsine function?

    -The domain of the arcsine function is limited to values between -1 and 1 because sine of any angle only produces results within this range.

  • What is the arcsine of negative square root of 3 over 2?

    -The arcsine of negative square root of 3 over 2 is equal to negative pi over 3 radians.

  • How do you calculate angles from sine values in radians?

    -To calculate angles from sine values in radians, you use the inverse sine (arcsine) function. For example, the arcsine of negative square root of 3 over 2 gives negative pi over 3 radians.

  • Why does adding multiples of 2pi to an angle give the same sine value?

    -Since sine is periodic with a period of 2pi, adding multiples of 2pi to an angle brings you to the same position on the unit circle, giving the same sine value.

  • What triangle type is involved when sine equals square root of 3 over 2?

    -A 30-60-90 triangle is involved when sine equals the square root of 3 over 2. The angle opposite the side of length square root of 3 over 2 is 60 degrees, or pi over 3 radians.

Outlines

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Mindmap

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Keywords

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Highlights

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Transcripts

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora
Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
TrigonometrySine FunctionUnit CircleInverse SineRadiansArcsineMath TutorialAnglesTrig FunctionsGeometry
¿Necesitas un resumen en inglés?