Perbandingan Trigonometri Sudut Istimewa

Matematika Teman Kita
3 Feb 202109:01

Summary

TLDRThis video lesson introduces the topic of special angles in trigonometry, focusing on the angles 0°, 30°, 45°, 60°, and 90°. It explains how to calculate the sine, cosine, and tangent for these angles, along with their reciprocals (cosecant, secant, and cotangent). The video includes step-by-step examples, such as solving the expression sin(30°) + cos(90°) - tan(45°), and using trigonometric functions to find missing sides in right-angled triangles. The approach is clear and educational, aiming to make learning trigonometry accessible and engaging for viewers.

Takeaways

  • 😀 The topic of the video is about learning trigonometry, focusing on special angles.
  • 😀 The special angles discussed include 0°, 30°, 45°, 60°, and 90°.
  • 😀 A table comparing trigonometric values (sin, cos, tan) for these angles is introduced.
  • 😀 The sine (sin) of 0° is 0, sin 30° is 1/2, sin 45° is √2/2, sin 60° is √3/2, and sin 90° is 1.
  • 😀 The cosine (cos) values for the same angles are cos 0° = 1, cos 30° = √3/2, cos 45° = √2/2, cos 60° = 1/2, and cos 90° = 0.
  • 😀 The tangent (tan) values are tan 0° = 0, tan 30° = 1/√3, tan 45° = 1, tan 60° = √3, and tan 90° is undefined.
  • 😀 To find cosecant (csc), secant (sec), and cotangent (cot) values, simply take the reciprocal of sin, cos, and tan respectively.
  • 😀 An example problem is shown to calculate the value of sin 30° + cos 90° - tan 45°, with the result being 1/2 + 0 - 1 = -1/2.
  • 😀 A second example involves a right triangle with known side BC = 20 cm and angle ∠ACB = 30°. The goal is to find sides AB and AC.
  • 😀 The sine and cosine functions are used to solve for the missing sides AB and AC, with AB calculated as 40 cm and AC as 20√3 cm.

Q & A

  • What are the special angles discussed in the lesson?

    -The special angles discussed in the lesson are 0°, 30°, 45°, 60°, and 90°.

  • What are the trigonometric functions for sine at these special angles?

    -The sine values for the special angles are: - sin(0°) = 0, - sin(30°) = 1/2, - sin(45°) = √2/2, - sin(60°) = √3/2, - sin(90°) = 1.

  • What are the cosine values for these special angles?

    -The cosine values for the special angles are: - cos(0°) = 1, - cos(30°) = √3/2, - cos(45°) = √2/2, - cos(60°) = 1/2, - cos(90°) = 0.

  • How is the tangent value calculated for these angles?

    -The tangent values for the special angles are: - tan(0°) = 0, - tan(30°) = 1/√3, - tan(45°) = 1, - tan(60°) = √3, - tan(90°) is undefined (as it involves division by zero).

  • What are the inverse trigonometric functions mentioned in the lesson?

    -The inverse trigonometric functions discussed are cosecant (csc), secant (sec), and cotangent (cot), which are the reciprocals of sine, cosine, and tangent respectively.

  • What is the formula for cosecant, secant, and cotangent?

    -The formulas for the inverse trigonometric functions are: - csc(θ) = 1/sin(θ), - sec(θ) = 1/cos(θ), - cot(θ) = 1/tan(θ).

  • In the first example, how do you solve the expression sin(30°) + cos(90°) - tan(45°)?

    -Using the table of values: - sin(30°) = 1/2, - cos(90°) = 0, - tan(45°) = 1. The result is: 1/2 + 0 - 1 = -1/2.

  • In the triangle ABC, what information is given to solve for AB and AC?

    -The information given includes a right triangle ABC with the right angle at C, side BC = 20 cm, and angle ABC = 30°. The goal is to find the lengths of sides AB and AC.

  • How do you find the length of the hypotenuse (AB) in triangle ABC?

    -To find AB, we use the sine function: - sin(30°) = BC/AB. From the table, sin(30°) = 1/2. So, 1/2 = 20/AB, which gives AB = 40 cm.

  • How do you find the length of side AC in triangle ABC?

    -To find AC, we use the cosine function: - cos(30°) = AC/AB. From the table, cos(30°) = √3/2. So, √3/2 = AC/40, which gives AC = 20√3 cm.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
TrigonometrySpecial AnglesMath LearningSine CosineTangent FunctionsEducational VideoMath TutorialProblem SolvingGeometryStudy Guide
Benötigen Sie eine Zusammenfassung auf Englisch?