Why Calculus? - Lesson 1 | Infinity Learn NEET

Infinity Learn NEET
22 Jan 201910:04

Summary

TLDREl guion explora conceptos fundamentales del cálculo, como la velocidad instantánea y el área bajo curvas, a través de escenarios cotidianos como la caída de una pelota y el lanzamiento de una piedra. Desafía la lógica con el paradoxo de la dicotomía de Zenón y plantea la importancia del cálculo para resolver problemas de movimiento y áreas complejas, sugiriendo que el cálculo, con su enfoque en polígonos y aproximaciones, proporciona respuestas a estos misterios.

Takeaways

  • 🏀 Nora juega con una pelota y se cuestiona sobre su movimiento.
  • 📏 Nora suelta la pelota desde una altura de un metro y se pregunta sobre su velocidad a la mitad de su trayectoria.
  • ⏱ La pelota tarda un segundo en llegar al punto medio, a 50 centímetros de altura.
  • 🔢 Nora asume erróneamente que la velocidad de la pelota en el punto medio es de 50 centímetros por segundo, lo cual es la velocidad promedio.
  • 🚀 La velocidad instantánea en el punto 'B' es diferente y se calcula con cálculo diferencial.
  • 🤔 Nora se plantea por qué la pelota toca el suelo, considerando que si se divide la distancia en mitades infinitas, parece que tomaría un tiempo infinito.
  • 🪄 Este razonamiento forma parte del paradoja de la dicotomía de Zenón, que también confundió a filósofos antiguos.
  • 📐 La cálculo proporciona una respuesta satisfactoria a la paradoja de Zenón y a otros problemas similares.
  • 🌊 Al lanzar una piedra, la cálculo ayuda a determinar el ángulo óptimo para alcanzar la mayor distancia.
  • 📉 El cálculo también es fundamental para encontrar áreas bajo curvas, algo que no se puede hacer con formas geométricas simples.
  • 📐 La idea central del cálculo se utiliza desde la antigüedad para aproximar áreas, como la del círculo, mediante el método de los polígonos inscritos y circumscriptos.

Q & A

  • ¿Qué hace Nora mientras juega con una pelota?

    -Nora se muestra curiosa acerca del movimiento de la pelota y la suelta en el suelo para observar su caída.

  • ¿Cuál es la pregunta que se hace Nora sobre la pelota al llegar a la mitad de su trayectoria?

    -Nora se pregunta cuál será la velocidad de la pelota al alcanzar la mitad de su trayectoria.

  • ¿De qué altura inicia la caída de la pelota Nora?

    -Nora suelta la pelota desde una altura de un metro sobre el suelo.

  • ¿Cuál es la conclusión incorrecta que Nora llega a respecto a la velocidad de la pelota en el punto B?

    -Nora incorrectamente concluye que la velocidad de la pelota en el punto B es de 50 centímetros por segundo, lo cual es en realidad la velocidad promedio hasta ese punto.

  • ¿Por qué la velocidad que Nora calcula no es la velocidad instantánea en el punto B?

    -La velocidad que Nora calcula no es instantánea porque asume una velocidad constante, pero en realidad la velocidad de la pelota aumenta a medida que cae.

  • ¿Qué rama de las matemáticas ayuda a calcular la velocidad instantánea de un objeto?

    -El cálculo, una rama de las matemáticas, ayuda a calcular la velocidad instantánea de un objeto.

  • ¿Qué paradoja plantea Nora sobre por qué la pelota nunca debería tocar el suelo?

    -Nora plantea la paradoja de la dicotomía de Zenón, que sugiere que la pelota nunca debería tocar el suelo debido a la división infinita de la distancia que debe recorrer.

  • ¿Cómo podría calcularse la velocidad instantánea de un objeto utilizando el cálculo?

    -La velocidad instantánea se puede calcular tomando el límite de la velocidad promedio cuando el intervalo de tiempo tiende a cero, lo cual es un concepto fundamental del cálculo.

  • ¿En qué otro ejemplo del guion se menciona el uso del cálculo para resolver un problema real?

    -Se menciona el uso del cálculo para determinar el ángulo óptimo para lanzar una piedra y cubrir la mayor distancia posible.

  • ¿Cómo se relaciona el cálculo con la determinación del área bajo una curva?

    -El cálculo permite integrar funciones para encontrar áreas bajo curvas, algo que no es posible utilizando solo formas geométricas simples.

  • ¿Qué método utilizado por los matemáticos griegos para encontrar el área de un círculo se menciona en el guion?

    -Se menciona el método de la exhaustión, que consistía en inscribir y circumscribir polígonos en el círculo para aproximar su área.

  • ¿Cuál es la idea central del cálculo que se utiliza para resolver los problemas mencionados en el guion?

    -La idea central del cálculo es la aproximación de áreas y longitudes utilizando polígonos con un número cada vez mayor de lados, lo que se relaciona con los límites y derivadas del cálculo.

  • ¿Qué invita el guion a hacer en la sección de comentarios?

    -El guion invita a los lectores a compartir sus pensamientos en la sección de comentarios sobre la paradoja planteada y cómo abordar el problema de la velocidad instantánea.

Outlines

00:00

🏀 La Curiosidad de Nora con una Bola

Nora juega con una pelota y se pregunta sobre su velocidad en el punto medio de su caída. Al soltar la pelota desde un metro de altura, descubre que tarda un segundo en llegar a la mitad del trayecto, que es 50 centímetros. Asumiendo una velocidad constante, calcula una velocidad de 50 centímetros por segundo. Sin embargo, esto es incorrecto ya que la velocidad de la pelota aumenta mientras cae, lo que hace que el cálculo sea una velocidad promedio en lugar de una velocidad instantánea. Nora se enfrenta a la paradoja de Zenón, cuestionando si la pelota alguna vez toca el suelo, dado que la distancia a recorrer se divide continuamente en mitades. Este razonamiento lleva a la conclusión de que la pelota debería tomar un tiempo infinito para alcanzar el suelo. La resolución a estos problemas se encuentra en el cálculo, que también puede ayudar a resolver otros problemas de la vida real, como el ángulo óptimo para lanzar una piedra lo más lejos posible.

05:00

📚 El Poder del Cálculo en la Vida Real

El cálculo es una herramienta matemática fundamental para analizar problemas en movimiento, como la velocidad instantánea de un objeto o el ángulo óptimo para lanzar una piedra. Además, es esencial para calcular áreas bajo curvas, un problema que no se puede resolver con formas geométricas simples como rectángulos o triángulos. La aproximación de áreas bajo curvas se ha utilizado históricamente, como el método de agotado de los matemáticos griegos para encontrar el área de un círculo, inscribiendo y circunscribiendo polígonos con un número cada vez mayor de lados. Este concepto central del cálculo, de aproximar áreas y velocidades a través de la división en partes más pequeñas, se explorará en detalle en el curso, mostrando cómo el cálculo se relaciona con estos problemas y cómo se puede aplicar para hallar soluciones precisas.

Mindmap

Keywords

💡Cálculo

El Cálculo es una rama de las matemáticas que estudia temas como la variación de funciones y la integración. En el video, el Cálculo se presenta como la herramienta para encontrar la velocidad instantánea de un objeto en movimiento y para resolver el paradoja de la dicha de Zenón, mostrando su relevancia en la comprensión de fenómenos del mundo real.

💡Velocidad instantánea

La velocidad instantánea se refiere a la velocidad de un objeto en un punto específico de su trayectoria. En el video, se ilustra cómo calcular esta velocidad usando el Cálculo, a diferencia de la velocidad promedio que Nora inicialmente calcula incorrectamente como 50 centímetros por segundo.

💡Paradoja de la dicha de Zenón

La paradoja de la dicha de Zenón es un problema filosófico que sugiere que un objeto en movimiento nunca alcanzaría su destino si se considera que debe recorrer la mitad de la distancia restante continuamente. En el video, se utiliza como ejemplo para introducir la idea del Cálculo y su capacidad para resolver aparentes contradicciones lógicas.

💡Ángulo de lanzamiento

El ángulo de lanzamiento es la medida del espacio que forma un objeto en el aire con la horizontal cuando es lanzado. En el video, se cuestiona cuál sería el ángulo óptimo para lanzar una piedra y maximizar su distancia, un problema que el Cálculo puede resolver al analizar cómo cambia la distancia en función del ángulo.

💡Área bajo la curva

El área bajo la curva se refiere a la medida del espacio comprendido entre la curva y el eje horizontal. En el video, se plantea cómo calcular este tipo de áreas, que son comunes en problemas de movimiento y son fundamentales para entender conceptos más complejos del Cálculo.

💡Método de agotado

El método de agotado es una técnica utilizada por los matemáticos griegos para aproximar áreas de figuras geométricas como el círculo, inscribiendo y circunscribiendo polígonos con un número cada vez mayor de lados. En el video, se menciona como precursor del pensamiento del Cálculo y su enfoque en la aproximación y el límite.

💡Polígonos

Los polígonos son figuras geométricas con múltiples lados. En el video, se usan para ilustrar cómo, al aumentar el número de lados de un polígono que se inscribió o circunscribe alrededor de un círculo, se acerca más a la forma circular, lo que es una aproximación del área del círculo.

💡Rectángulo

El rectángulo es una figura geométrica con cuatro lados y cuatro esquinas. En el video, se utiliza para explicar cómo se calcula el área de formas simples, como el rectángulo, que es la base para entender cómo el Cálculo calcula áreas más complejas bajo curvas.

💡Área

El área es una medida de la extensión de una figura en un plano. En el video, el concepto de área se discute en el contexto de formas geométricas simples y cómo el Cálculo nos permite calcular áreas de figuras más complejas, como las que se encuentran bajo curvas.

💡Límite

El límite es un concepto fundamental del Cálculo que se refiere a la aproximación de un valor por muy cercano que se quiera a un punto específico. En el video, el límite se introduce como la idea que permite resolver aparentes paradojas y calcular áreas y velocidades instantáneas.

Highlights

Nora's curiosity about the ball's motion and her attempt to calculate its speed at the midpoint.

The misconception that the ball's speed at the midpoint is the average speed, which is incorrect due to the acceleration of the fall.

Introduction to the concept of instantaneous speed and its difference from average speed.

The paradox of 'zero divided by zero' when trying to calculate speed at an instant, illustrating the need for calculus.

Nora's thought experiment about the ball never reaching the floor due to an infinite number of steps, reflecting Zeno's Dichotomy paradox.

The historical context of Zeno's paradox and its relevance to understanding motion.

The practical problem of finding the optimal angle to throw a stone for maximum distance, introducing the application of calculus in real-life scenarios.

The relationship between the angle of projection and the distance covered by an object.

The challenge of calculating the area under a curve, which cannot be done using simple geometric shapes.

The method of exhaustion used by ancient Greek mathematicians to approximate the area of a circle, foreshadowing the principles of calculus.

The central idea of calculus as a tool for solving problems related to motion and area under curves.

The connection between finding instantaneous speed and calculating areas of irregular shapes through calculus.

The预告 of exploring the central ideas of calculus in the next part of the course.

Invitation for the audience to think about and share their approaches to solving the problem of instantaneous speed.

The预告 of the next part of the course, where the application of calculus to find instantaneous speed and calculate areas will be discussed.

Transcripts

play00:04

While playing with a ball, Nora gets curious

play00:07

about its motion.

play00:09

As she drops the ball on the floor, she asks

play00:12

herself “What will be it's speed as it reaches

play00:15

midway in it's path?”

play00:18

She drops the ball from a height one metre

play00:19

above the ground.

play00:21

It covers 50 centimetres to reach the mid-point.

play00:25

Nora knows that it took one second for the

play00:28

ball to reach the midpoint B. With this information,

play00:32

can she find the speed of the ball exactly

play00:35

when it’s at point B?

play00:38

Like you’d probably be thinking, Nora also

play00:41

thinks the speed of the ball will be the distance

play00:44

travelled by it divided by the time taken

play00:47

to reach that point.

play00:49

So she comes up with the answer ‘50 centimetres

play00:52

per second’ or zero point five metres per

play00:54

second.

play00:56

But is this the speed of the ball when it’s at point ‘B’?

play01:00

No, it's not.

play01:02

This answer would have been correct if the

play01:04

speed of the ball was constant throughout

play01:06

it's motion.

play01:08

But we know that the speed of the ball increases

play01:10

as it falls.

play01:12

So, the answer Nora got is actually the AVERAGE

play01:15

speed of the ball as it reaches position ‘B’.

play01:19

But what we are interested in is the speed

play01:22

exactly at the INSTANT when the ball is at

play01:24

position ‘B’.

play01:26

That is called the instantaneous speed of the ball.

play01:30

Can you try finding the instantaneous speed?

play01:34

Let’s see what happens at the instant the

play01:37

ball is at position ‘B’.

play01:40

The distance travelled by the ball at this

play01:42

instant is zero and the time elapsed at this

play01:45

instant is zero.

play01:47

So we get the speed to be ‘zero divided

play01:49

by zero’ which is undefined.

play01:52

Doesn’t make any sense right!

play01:55

How do we then find the instantaneous speed

play01:57

of the ball?

play01:59

CALCULUS is the branch of mathematics that

play02:02

helps us answer this question.

play02:04

How?

play02:06

We will see that in the later section of this course.

play02:09

But wait… another thought puzzled Nora.

play02:13

As she drops the ball, she wonders, why the

play02:16

ball ever reaches the floor…

play02:18

This might seem to be a lame thought, but

play02:21

don’t forget that Nora’s smart.

play02:24

She thinks that mathematically, the ball should

play02:25

never touch the ground.

play02:28

So,what was her thought process?

play02:30

Let’s see!

play02:32

Suppose she drops the ball from a height one

play02:34

meter above the floor.

play02:36

Now to reach the floor, first the ball has

play02:39

to cover half this distance to reach point

play02:41

‘B’.

play02:43

Then the ball has to cover half of the remaining

play02:45

distance; that is one fourth of a meter.

play02:49

Then the ball has to cover the next half;

play02:52

then the next half and so on.

play02:55

It means the number of steps the ball has

play02:57

to cover to reach the floor does not end.

play03:01

That is, there are infinite number of steps

play03:03

the ball has to perform.

play03:05

And to perform these steps, the ball takes

play03:07

an infinite amount of time.

play03:10

So according to this logic, Nora thinks the

play03:12

ball requires an INFINITE amount of time to

play03:15

reach the floor.

play03:17

Therefore the ball should never reach the floor right?

play03:20

Do you also think the same?

play03:23

Do you think Nora went wrong somewhere?

play03:27

Share your thoughts in the comments section

play03:32

Actually, Nora isn’t only the one who was

play03:34

puzzled by this.

play03:36

Many centuries ago, the same thought puzzled

play03:39

a Greek philosopher, Zeno of Elea .

play03:42

This is usually referred to as Zeno’s Dichotomy paradox.

play03:47

Even though we know that when we drop the

play03:49

ball it reaches the floor, this logical and

play03:52

mathematical conclusion tells us that it should

play03:55

never reach the floor.

play03:57

Again, a satisfactory answer to the Zeno’s

play04:00

paradox is provided by Calculus.

play04:04

We saw two examples here that calculus can

play04:07

give us the answer to!

play04:10

But before looking at the central ideas of

play04:12

calculus, we will further explore what other

play04:15

real life problems calculus can help us with.

play04:22

If we are on a cliff next to the sea, it’s

play04:24

always tempting to randomly throw stones into

play04:27

the sea.

play04:28

It’s so much fun right!

play04:31

But have you ever wondered about the best

play04:33

possible way to throw a stone such that it

play04:36

covers the maximum distance?

play04:38

Knowing this was certainly important in the

play04:41

past to attack the enemy’s ship.

play04:44

Now,let’s get back to our question.

play04:47

If we throw a stone too high, we know it will

play04:49

not cover maximum distance.

play04:52

What if we throw the stone horizontally?

play04:56

Maybe not!

play04:58

By experience, we know instead of throwing

play05:00

the stone horizontally, if we throw it at

play05:02

an angle, it will cover greater distance.

play05:07

Of course the answer also depends on the speed

play05:09

with which you throw the stone.

play05:12

Let’s say, if you apply all your energy,

play05:14

you can throw it with a speed ‘V’.

play05:17

So if we throw the stone with a fixed speed

play05:19

‘v’, at what angle should we throw it

play05:21

to cover maximum possible distance?

play05:25

As the angle at which we throw the stone changes,

play05:28

the distance covered by it changes.

play05:31

And this is where calculus comes into play.

play05:34

To get the answer we need to know how the

play05:37

distance covered by the stone changes, as

play05:39

the angle we throw it at changes.

play05:42

And this is exactly the kind of problem that

play05:44

Calculus helps us with.

play05:47

Alright, so calculus helps us with analysing

play05:50

things in motion.

play05:52

For instance, finding the instantaneous speed

play05:54

of an object, or finding the angle at which

play05:57

to throw the stone.

play05:59

But wait…

play06:00

Let me ask you a completely random question.

play06:03

Look at this trajectory of the stone.

play06:06

What do you think will be this area under

play06:09

the dashed curved path?

play06:12

We know how to find the area of a simple shape

play06:15

like the rectangle.

play06:16

It's area is equal to its length times its width.

play06:20

But how do we get this formula?

play06:23

Let’s say the length of the rectangle is

play06:26

‘5’ centimetres and its width is ‘10’

play06:28

centimetres.

play06:30

Then the area of the rectangle is fifty ‘square

play06:33

centimetres’.

play06:34

So,what does this mean?

play06:36

It means that if we take a square tile of

play06:39

length of one centimetre; that is a square

play06:42

tile of area one SQUARE centimetre, then fifty

play06:45

such tiles will cover this rectangle.

play06:49

Now let’s get back to our question.

play06:52

What will be the area under this curve?

play06:54

Should we cover this area also with square tiles?

play06:58

This will not work right!

play07:00

Look at the square tiles covering the curve.

play07:03

We have a problem here as they don’t fit perfectly.

play07:07

Then how can we figure out this area?

play07:10

You would have guessed by now that calculus

play07:12

helps us to find the answer.

play07:15

We know the area of simple shapes like rectangles,

play07:19

triangles, polygons and so on.

play07:21

Here are the formulas!

play07:24

This is easy because straight lines are involved.

play07:28

But the shapes that we encounter in our daily

play07:30

lives are not that simple, as curves are involved.

play07:35

That’s where calculus comes into the picture!

play07:39

So we have seen that other than finding the

play07:41

instantaneous speed of an object and the angle

play07:43

at which to throw an object to cover maximum

play07:46

distance, calculus also helps us to find the

play07:49

area of different shapes.

play07:52

In this course about Calculus, we will explore

play07:55

each of these examples in detail.

play07:58

But before moving on, let’s have a glimpse

play08:01

at the central idea around calculus.

play08:04

This idea was used by Greek mathematicians,

play08:06

to find the area of a shape, long before calculus

play08:10

was developed.

play08:12

Consider this Circle with radius ‘r’.

play08:15

How would you find its area?

play08:19

Consider these two triangles: one circumscribed

play08:22

around the circle, and the other inscribed

play08:25

inside it.

play08:27

We can say that the area of the circle will

play08:29

be between the areas of these two triangles.

play08:33

Now what if we used squares instead of triangles.

play08:37

We will get a better approximation of the

play08:39

area of circle if instead of triangles, we

play08:42

use squares.

play08:44

We can further improve our results if we used

play08:47

pentagons.

play08:49

Did you get the idea?

play08:51

Can you tell me how we can improve the approximation

play08:53

further?

play08:56

As we consider polygons with greater number

play08:59

of sides, we will get close to the circle.

play09:03

The area of the polygon inscribed in the circle

play09:06

and the area of the polygon circumscribing

play09:08

the circle get closer to each other.

play09:12

This was the method used by Greek mathematicians

play09:14

to find the area of circle.

play09:17

It's called the method of exhaustion.

play09:20

This is the central idea of Calculus used

play09:23

to solve the problems we mentioned above.

play09:26

With this knowledge, do you think we can solve

play09:29

our problem of finding the instantaneous speed

play09:32

of an object?

play09:34

Think about the ways in which you can approach

play09:36

the problem and share your thoughts in the

play09:38

comments section.

play09:41

In the next part, we will see how to find

play09:44

the instantaneous speed of an object and the

play09:47

idea applied to calculate the area of a shape.

play09:50

We will also discover that these two ideas

play09:54

are related to each other.

play09:56

See you in the next part!

Rate This

5.0 / 5 (0 votes)

相关标签
CálculoMatemáticasFísicaMovimientoParadoxoZenoInstantáneoVelocidadÁnguloDinámicaÁrea
您是否需要英文摘要?