PRODUCTOS NOTABLES: BINOMIO AL CUBO (Ejercicio 4)
Summary
TLDREl video explica cómo desarrollar o expandir un binomio al cubo usando el producto notable. A partir de un binomio de la forma (a - b)^3, se desglosan los pasos para aplicar correctamente las propiedades de potenciación y realizar las operaciones involucradas. Se reemplazan las letras por términos específicos, como 2p y 7p^4, y se desarrollan los cálculos paso a paso, utilizando exponentes y multiplicaciones para obtener la expresión final. El video concluye con la expresión completa y desarrollada del binomio al cubo, destacando cada término resultante.
Takeaways
- 🔢 El desarrollo del binomio al cubo se realiza utilizando el producto notable.
- 📏 El binomio es de la forma (a - b)³, y su desarrollo es a³ - 3a²b + 3ab² - b³.
- 🔄 Para hacer el desarrollo más claro, se reemplazan las letras a y b por paréntesis.
- ✏️ Se colocan los términos correspondientes dentro de los paréntesis: a = 2p y b = 7p⁴.
- 🧮 Aplicando la propiedad de la potenciación, se distribuye el exponente 3 a cada factor de la base.
- ➗ Se desarrollan paso a paso las potencias: 2³ = 8 y p³ = p⁹.
- 📝 En el segundo término, se resuelve 3(2²)(p³)(7p⁴), aplicando las propiedades de potenciación.
- 🔍 El tercer término se resuelve como 3(2)(p³)(49), multiplicando y sumando exponentes cuando es necesario.
- 📊 El último término se resuelve como 7³(p⁴)³, que da 343p¹².
- ✔️ El resultado final del desarrollo es una expresión de cuatro términos: 8p⁹ - 84p¹⁰ + 294p¹¹ - 343p¹².
Q & A
¿Qué tipo de producto notable se utiliza en este desarrollo?
-Se utiliza el producto notable del binomio al cubo.
¿Cuál es la forma general del binomio que se desarrolla en el video?
-El binomio tiene la forma 'a menos b', todo elevado al cubo.
¿Cuál es el desarrollo general de un binomio al cubo?
-El desarrollo general es: el primer término al cubo, menos 3 veces el primer término al cuadrado por el segundo, más 3 veces el primer término por el segundo al cuadrado, menos el segundo término al cubo.
¿Qué técnica se usa para reemplazar las variables a y b en el binomio?
-Se usa la técnica de sustituir las letras 'a' y 'b' por paréntesis, lo que permite introducir posteriormente los valores concretos.
¿Cuáles son los valores asignados a las variables a y b en el ejercicio?
-El valor de 'a' es 2p y el valor de 'b' es 7p^4.
¿Qué propiedad se aplica al elevar el primer término al cubo?
-Se aplica la propiedad de la potenciación, donde el exponente se reparte para cada uno de los factores de la base.
¿Qué valor se obtiene al calcular 2p elevado al cubo?
-El resultado de 2p al cubo es 8p^3.
¿Qué operación se realiza para desarrollar el segundo término del binomio?
-Se multiplica 3 por el cuadrado del primer término (2p^2) y por el segundo término (7p^4).
¿Cómo se desarrollan los exponentes en términos de potenciación?
-Cuando una potencia está elevada a otro exponente, se conserva la base y se multiplican los exponentes.
¿Cuál es el resultado final del desarrollo completo del binomio al cubo?
-El desarrollo completo es: 8p^9 - 84p^10 + 294p^11 - 343p^12.
Outlines
此内容仅限付费用户访问。 请升级后访问。
立即升级Mindmap
此内容仅限付费用户访问。 请升级后访问。
立即升级Keywords
此内容仅限付费用户访问。 请升级后访问。
立即升级Highlights
此内容仅限付费用户访问。 请升级后访问。
立即升级Transcripts
此内容仅限付费用户访问。 请升级后访问。
立即升级5.0 / 5 (0 votes)