SIMPLIFICAR FRACCIONES ALGEBRAICAS - Ejercicio 2
Summary
TLDREl guion ofrece una explicación detallada sobre cómo simplificar una fracción algebraica. Se menciona la importancia de factorizar tanto el numerador como el denominador para identificar y eliminar factores comunes. Se utiliza el ejemplo de un trinomio \( x^2 + bx + c \) y se describe el proceso de factorización, incluyendo la elección de números para el trinomio y la diferencia de cuadrados perfecta. Finalmente, se resalta que solo se pueden cancelar términos que sean producto en el numerador y el denominador, y se evita la simplificación de términos que están sumando o restando.
Takeaways
- 📚 La simplificación de una fracción algebraica implica factorizar tanto el numerador como el denominador para encontrar factores comunes que puedan ser cancelados.
- 🔍 Se inicia con el numerador, que es un trinomio de la forma x²+bx+c, y se abre con dos paréntesis, extrayendo la raíz cuadrada del primer término.
- 📐 Se definen los signos de la siguiente manera: 'más por menos' da menos y 'menos por más' también da menos, para encontrar los números que cumplen con las condiciones de la ecuación.
- 🔢 Se buscan dos números que, multiplicados, den el producto c y que sumados, den el término b, en este caso, -6 y -2 son los números que satisfacen las condiciones.
- 📉 En el denominador, se identifica una diferencia de cuadrados perfectas, que se factoriza como (x+6)(x-6) para la expresión x² - 36.
- 🔄 Una vez factorizados, se revisan los factores comunes entre el numerador y el denominador para simplificar la fracción.
- ❌ Solo se pueden cancelar factores que se repitan estrictamente en la multiplicación tanto en el numerador como en el denominador.
- 🚫 No se permite simplificar términos que estén sumando o restando; solo se pueden simplificar términos que estén multiplicados.
- 📝 La fracción resultante después de simplificar es x-2 en el numerador y x+6 en el denominador, y no se puede simplificar más.
- 🛑 Se enfatiza que no se deben eliminar términos como 'x' o simplificar números en la fracción que no están multiplicados, como el 2 con el 6.
- 🔑 La simplificación de fracciones es un proceso que busca la expresión más sencilla de una fracción, pero sigue reglas específicas para la cancelación de términos.
Q & A
¿Qué debemos hacer para simplificar una fracción algebraica?
-Debemos factorizar completamente el numerador y el denominador, buscar factores comunes que puedan cancelarse y así presentar la fracción de la manera más sencilla posible.
¿Cómo se abre el trinomio en el numerador de la fracción?
-Se abren dos paréntesis, se saca la raíz cuadrada del primer término, que es X, y se definen los signos de tal manera que 'más por menos' da 'menos' y 'menos por más' también da 'menos'.
¿Cuáles son los dos números negativos que cumplen las condiciones mencionadas en el guion para factorizar el numerador?
-Los dos números negativos son -6 y -2, ya que multiplicados dan +12 y sumados dan -8.
¿Cómo se factoriza la diferencia de cuadrados en el denominador?
-Se extrae la raíz cuadrada del primer término (x) y la del segundo término (6), y se escribe en una suma y en una resta, resultando en (x+6)(x-6), que es la factorización de x² - 36.
¿Qué factor se repite tanto en el numerador como en el denominador y por lo tanto se puede cancelar?
-El factor que se repite es (x-6), por lo que se puede cancelar o eliminar de la fracción.
¿Qué recordamos hacer antes de cancelar factores en una fracción?
-Recordamos que para cancelar cosas en una fracción, los factores deben estar estrictamente multiplicados tanto arriba como abajo.
¿Cuál es la fracción simplificada al final del proceso descrito en el guion?
-La fracción simplificada es (x-2)/(x+6), donde no se puede simplificar más nada y no se deben eliminar términos que estén sumando o restando.
¿Por qué no se puede simplificar la x o el 2 con el 6 sacándoles la mitad?
-No se pueden simplificar porque están en una suma o resta, y solo se pueden simplificar expresiones o cantidades que se encuentren multiplicando en el numerador y el denominador.
¿Qué tipo de factorización se realiza en el numerador del trinomio?
-Se realiza una factorización de un trinomio de la forma x²+bx+c, donde se buscan dos números que cumplan con las condiciones de sumar y multiplicar para obtener los términos correspondientes del trinomio.
¿Qué significa 'signo positivo invisible' en el contexto de factorizar el numerador?
-El 'signo positivo invisible' se refiere a que en la factorización, si se tiene un signo positivo en un término, se asume que el siguiente término en la factorización debe tener un signo negativo para que la suma de los productos de los términos de los paréntesis sea la constante del trinomio.
Outlines
This section is available to paid users only. Please upgrade to access this part.
Upgrade NowMindmap
This section is available to paid users only. Please upgrade to access this part.
Upgrade NowKeywords
This section is available to paid users only. Please upgrade to access this part.
Upgrade NowHighlights
This section is available to paid users only. Please upgrade to access this part.
Upgrade NowTranscripts
This section is available to paid users only. Please upgrade to access this part.
Upgrade Now5.0 / 5 (0 votes)