Método de Euler y Euler Mejorado

Aaron Tellez Ceja
19 Apr 201507:20

Summary

TLDRThis video script delves into numerical methods for solving differential equations, focusing on Euler's method and the improved Euler method, also known as Heun's method. It explains the analytical challenges of finding solutions for certain differential equations and the utility of numerical methods to approximate solutions. The script outlines the step-by-step process of both Euler's and Heun's methods, emphasizing the importance of step size 'h' in accuracy. An example is provided to demonstrate how these methods are applied to a specific differential equation, highlighting the improved accuracy of Heun's method over Euler's with the same step size.

Takeaways

  • 📚 The script discusses the numerical methods of Euler and Heun, named after mathematicians from the 18th century, for solving differential equations.
  • 🔍 Analytical solutions for differential equations are not always possible, and numerical methods offer a way to approximate solutions when they are not obtainable.
  • 📈 Numerical methods use differential equations as the basis for algorithms that approximate unknown solutions, often visualized as numerical solution curves.
  • 📝 Euler's method is an iterative process that starts with an initial point and uses a fixed step size 'h' to approximate the solution at subsequent points.
  • 📉 Heun's method, also known as the improved Euler method, offers a more accurate approximation by averaging two estimates of the slope of the solution curve at each step.
  • 📌 The script explains that the smaller the step size 'h', the better the approximation, as demonstrated by the closer fit of the numerical solution curve to the exact solution curve.
  • 📐 The method of Euler involves calculating the derivative of the function, which represents the slope of the tangent line to the solution curve at a given point.
  • 📊 Heun's method introduces a prediction step and then corrects itself using this prediction to improve the accuracy of the solution.
  • 📚 The script provides an example of applying both Euler's and Heun's methods to a differential equation with an initial condition, illustrating the process step by step.
  • 📈 The choice of step size 'h' is crucial for the accuracy of the numerical solution; smaller values generally yield better approximations.
  • 🔬 Heun's method is part of a class of numerical techniques known as predictor-corrector methods, which first predict a value and then correct it for improved accuracy.

Q & A

  • Who is Leonhard Euler and why is he significant in the field of mathematics?

    -Leonhard Euler was an 18th-century mathematician after whom many mathematical concepts, formulas, methods, and results have been named. He made significant contributions to various fields of mathematics, including differential equations and numerical analysis.

  • What are numerical methods in the context of differential equations?

    -Numerical methods are algorithms used to approximate the solutions of differential equations when analytical solutions are either impossible to obtain or when one is interested in observing the behavior of the solution curve. They are based on the differential equation itself.

  • What is the Euler method in numerical analysis?

    -The Euler method is a numerical technique for solving first-order ordinary differential equations (ODEs) with a given initial value. It uses a fixed step size 'h' to approximate the solution at successive points.

  • How is the step size 'h' used in the Euler method?

    -In the Euler method, the step size 'h' is the fixed increment used to move from one point to the next in the numerical solution. It is chosen based on the desired resolution of the solution curve.

  • What is the relationship between the derivative of a function and the slope of the tangent line to the solution curve?

    -The derivative of a function at a point is equal to the slope of the tangent line to the solution curve at that point. This is used in the Euler method to approximate the change in the dependent variable 'y' over the change in the independent variable 'x'.

  • What is the Improved Euler method, and how does it differ from the standard Euler method?

    -The Improved Euler method, also known as the Heun's method, is an enhancement over the standard Euler method. It provides a better approximation by averaging the slopes obtained from two estimates at each step, thus increasing the accuracy of the solution.

  • How does the Improved Euler method improve the accuracy of the solution?

    -The Improved Euler method calculates two estimates of the slope at each step and then averages them to obtain a more accurate estimate of the solution's slope. This averaging process helps to reduce the error introduced by the linear approximation used in the standard Euler method.

  • What is the purpose of the 'Predictor-Corrector' techniques in numerical analysis?

    -Predictor-Corrector techniques, such as the Improved Euler method, are used to increase the accuracy of numerical solutions. They work by first predicting a value and then using this prediction to correct itself, resulting in a more precise approximation of the solution.

  • How does the choice of step size 'h' affect the accuracy of the numerical solution?

    -A smaller step size 'h' generally leads to a more accurate numerical solution, as it reduces the error introduced at each step. However, it also increases the computational effort required to solve the equation.

  • What is the significance of presenting the results in the form of a table of approximated values?

    -Presenting the results in a table of approximated values allows for easy comparison and visualization of the numerical solution at different points. It helps in understanding the behavior of the solution and the effectiveness of the numerical method used.

  • What is the main advantage of using numerical methods over analytical methods for solving differential equations?

    -Numerical methods offer a practical way to approximate solutions for differential equations that do not have analytical solutions or when the behavior of the solution curve is of primary interest. They provide a flexible and often more efficient approach compared to analytical methods.

Outlines

00:00

📚 Introduction to Numerical Methods for Differential Equations

This paragraph introduces the concept of numerical methods for solving differential equations, which are essential when analytical solutions are not feasible. It discusses the Euler method and an improved version known as the Heun method, both used to approximate solutions to differential equations by using algorithms based on the equations themselves. The paragraph explains the process of using a fixed step size 'h' to move from one point to the next on the solution curve and how the slope of the tangent (derivative) is approximated. It also outlines the formulas for the Euler method and sets the stage for a numerical example involving a specific differential equation.

05:01

🔍 Detailed Explanation of the Improved Euler (Heun) Method

The second paragraph delves deeper into the Heun method, an improvement over the basic Euler method, which provides a more accurate approximation of the solution curve. It describes the process of averaging two slopes to estimate the average slope of the solution curve over an interval, thus enhancing the precision of the approximation. The paragraph explains the iterative application of the Heun method's formulas, starting from an initial point and progressively calculating subsequent points on the solution curve. It also contrasts the Heun method with the Euler method by demonstrating how the former yields a closer numerical solution curve to the exact solution when using the same step size, and concludes with a mention of an even more accurate method, the Runge-Kutta method, which is part of the project final for a differential equations course.

Mindmap

Keywords

💡Leonhard Euler

Leonhard Euler was a great mathematician of the 18th century, known for his contributions to numerous mathematical concepts, formulas, methods, and results. The video focuses on his numerical method, known as the Euler method, for approximating solutions to differential equations. His legacy in mathematics is significant, and many concepts bear his name.

💡Numerical Method

A numerical method is an algorithmic approach used to approximate solutions to mathematical problems that may not be solvable analytically. The video discusses numerical methods for solving differential equations, particularly the Euler method and its improved versions. These methods are crucial when exact solutions are difficult or impossible to find.

💡Differential Equation

A differential equation is a mathematical equation that relates a function with its derivatives. In the video, the focus is on solving differential equations numerically, as they often arise in various scientific and engineering problems where analytical solutions are not feasible. The examples provided involve initial value problems.

💡Euler Method

The Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is based on using the slope of the tangent line at a point to approximate the next point. The video explains the basic steps of the Euler method and demonstrates its application.

💡Improved Euler Method

Also known as the Heun method, the improved Euler method enhances the accuracy of the basic Euler method by taking an additional step to correct the initial approximation. This involves averaging slopes to provide a more accurate prediction of the solution curve. The video shows how this method reduces error and offers better approximations.

💡Initial Value Problem

An initial value problem involves solving a differential equation with a given initial condition. The video uses initial value problems to illustrate the application of numerical methods like the Euler method and its improved version. The initial conditions set the starting point for the numerical approximation.

💡Step Size (h)

The step size (h) is a crucial parameter in numerical methods that determines the interval between points in the approximation process. Smaller step sizes generally lead to more accurate results but require more computational effort. The video emphasizes the importance of choosing an appropriate step size for better approximation.

💡Slope of Tangent Line

The slope of the tangent line to a curve at a given point represents the derivative of the function at that point. In the Euler method, this slope is used to approximate the next point in the solution of a differential equation. The video explains how the slope is fundamental to both the Euler and improved Euler methods.

💡Exact Solution

An exact solution to a differential equation is a precise, analytical expression that satisfies the equation. The video contrasts exact solutions with numerical approximations, highlighting situations where exact solutions are difficult or impossible to obtain, making numerical methods necessary.

💡Numerical Approximation

Numerical approximation involves using computational algorithms to estimate the solutions of mathematical problems. The video demonstrates how numerical methods like the Euler method and its improved version approximate the solutions to differential equations, providing useful insights when exact solutions are unattainable.

Highlights

Leonard Euler was a great mathematician from the 18th century, and many mathematical concepts are named after him.

The video discusses Euler's numerical method and another numerical method improved by Hitler.

Analytical development of differential equations is contrasted with numerical methods when analytical solutions are impossible.

Numerical methods use differential equations as a base for algorithms to approximate unknown solutions.

The Euler method is introduced for approximating solutions to initial value problems with a fixed step size h.

The slope of a tangent line, which is the derivative of the function, is used in the Euler method to approximate the solution curve.

The formula for the Euler method is derived from the differential of y with respect to x.

The improved Euler method, also known as the Heun method, is explained as a more accurate numerical technique.

The improved Euler method averages two estimates of the solution's slope to enhance accuracy.

The Heun method is part of a class of numerical techniques called predictor-corrector methods.

A step-by-step guide on how to apply the Euler and improved Euler methods is provided.

An example is given to demonstrate the application of both the Euler and improved Euler methods.

The choice of step size h is crucial for the accuracy of the numerical approximation.

A smaller step size h results in a numerical solution curve closer to the exact solution curve.

The video compares the numerical solution curves of the Euler and improved Euler methods using the same step size.

A third, more accurate method called the Runge-Kutta method is mentioned as part of the final project in differential equations.

The Runge-Kutta method is highlighted as being more precise than the Euler and improved Euler methods.

The video concludes with thanks for attention, summarizing the importance of numerical methods in solving differential equations.

Transcripts

play00:05

leonard you learn fue un gran matemático

play00:08

del siglo 18 en nombre de quien han sido

play00:11

nombrados muchos conceptos matemáticos

play00:13

fórmulas métodos y resultados en este

play00:16

vídeo hablaremos sobre el método

play00:18

numérico de euler y el método numérico

play00:20

de hitler mejorado a lo largo del curso

play00:22

hemos analizado y desarrollado

play00:24

ecuaciones diferenciales de manera

play00:26

analítica es decir desarrollamos

play00:28

procedimientos para obtener soluciones

play00:30

explícitas e implícitas pero muchos en

play00:33

cuestiones diferenciales poseen

play00:35

soluciones imposibles de obtener

play00:36

analíticamente en otras ocasiones sólo

play00:39

se quiere ver el comportamiento de la

play00:40

curva solución en estos casos resolvemos

play00:43

la ecuación diferencial de manera

play00:45

numérica

play00:46

esto significa usar la ecuación

play00:47

diferencial como base de un algoritmo

play00:49

para aproximar la solución desconocida a

play00:52

este algoritmo se le conoce como método

play00:54

numérico a la solución aproximada con

play00:57

una solución numérica que la gráfica

play00:59

como una curva de solución numérica

play01:02

para aproximar la solución de la

play01:04

ecuación diferencial de la forma de

play01:06

entre de x igual a fx de valor inicial

play01:09

de x 0 igual a cero

play01:12

primero se escribe en tamaño de paso h

play01:15

fijo para utilizarlo en cada paso que se

play01:17

haga de un punto al siguiente

play01:19

supóngase que se inicia en el punto x 0

play01:21

y es cero y después de n pasos iguales

play01:23

de longitud h se ha alcanzado el punto x

play01:26

cnn de igual forma del punto x cnn se

play01:30

pasa al punto x n1n1 en l paso iguales

play01:34

de longitud h

play01:43

sabemos que la pendiente de una línea

play01:45

tangente es la derivada de la función

play01:47

por lo tanto el iev prima es igual al

play01:50

diferencial de jake con respecto a x es

play01:52

lo mismo que la pendiente es decir el

play01:55

cambio de jay dividido entre el cambio

play01:57

de x

play02:03

al desarrollar tenemos n 1 n entre x n

play02:09

1 - x n lo cual es h

play02:13

realmente es igual a la función de xy ya

play02:15

con la pendiente que se obtiene la

play02:17

siguiente ecuación

play02:28

al despejar se obtiene la siguiente

play02:30

ecuación

play02:37

2

play02:42

por lo tanto las ecuaciones de euler son

play02:44

las siguientes

play02:47

todo el problema de valor inicial el

play02:49

método de yulia con tamaño de paso h

play02:51

consiste en iniciar en el punto de x 0 0

play02:54

y aplicar las fórmulas de manera

play02:56

interactiva primero se busca el valor de

play02:58

x para después buscar el eje para

play03:00

calcular los puntos sucesivos x 1 y 1 x

play03:03

2 de 2 x 3 de 3 de una curva solución

play03:06

aproximada los resultados se presentan

play03:09

por lo general en forma de una tabla de

play03:10

valores aproximados de resolución

play03:12

deseada a continuación realizaremos un

play03:15

ejemplo para la ecuación diferencial de

play03:17

x más un quinto de y con valores

play03:20

iniciales de x igual a cero inicial

play03:24

igual a menos 3 escogimos primero un

play03:27

valor de aquí igual a 1 en el intervalo

play03:29

05

play03:41

ahora escogemos un valor de h igual a

play03:43

0.2 en el intervalo de 01 es importante

play03:47

mencionar que mientras más pequeña sea

play03:49

el tamaño de paso h mejor es la

play03:51

aproximación como se puede observar de

play03:54

manera gráfica la aproximación con un

play03:56

tamaño de pase h más pequeños da como

play03:58

resultado una curva solución numérica

play04:00

más próxima la curva solución exacta

play04:05

i

play04:08

existen otros métodos en donde con menos

play04:10

cálculos si llega a una solución más

play04:12

aproximada el método de euler mejorado

play04:14

puede incrementar fácilmente la

play04:16

exactitud dado el problema de valor

play04:18

inicial de entre de x es igual a una

play04:21

función de x con un valor inicial de

play04:23

igual a cero y un valor inicial de

play04:25

visual x0 después de escoger el tamaño

play04:28

de paso h puede utilizarse el método de

play04:31

hitler para obtener una primera

play04:32

estimación la cual ahora se llama un1 en

play04:36

lugar de n 1 del valor de la solución en

play04:39

x n 1 igual la x n más h

play04:42

de esta manera nos quedan las siguientes

play04:44

fórmulas

play04:52

el siguiente paso es tomaron acá 2 igual

play04:55

una función de x n 1,11 como una segunda

play04:59

estimación de la pendiente de la curva

play05:01

solución la idea esencial del método de

play05:04

julian mejorado consiste en promedio de

play05:06

estas dos pendientes cada única dos para

play05:08

obtener una estimación más exacta de la

play05:10

pendiente promedio de la curva solución

play05:12

en todo el su intervalo de x n coma x

play05:15

tiene más 1

play05:23

por lo tanto la fórmula final del

play05:26

segundo paso como la forma de yulia si

play05:28

se escribe de la siguiente manera donde

play05:31

k es la pendiente promedio aproximada en

play05:34

el intervalo xn como x n 1 el método de

play05:38

julian mejorado forma parte de una clase

play05:40

de técnicas numéricas conocidas como

play05:42

métodos proyectores correctores primero

play05:45

se calcula una predicción n 1 del

play05:47

siguiente valor de hierro

play05:50

posteriormente esta se utiliza para

play05:53

corregirse a sí misma

play05:56

en resumen todo el problema de valor

play05:59

inicial el método de euler mejorado con

play06:02

tamaño de paso h consiste en iniciar en

play06:04

el punto x 0 0 y aplicar las fórmulas de

play06:07

manera iterativa de menos que busque el

play06:09

valor de x para después buscar el

play06:11

líquido

play06:14

a continuación realizaremos el mismo

play06:16

ejemplo que el método de juliá pero esta

play06:19

vez usando el método de julian mejorado

play06:21

de la ecuación diferencial de entre de x

play06:24

es igual a x más un quinto de los

play06:27

valores iniciales de x0 igual a cero y

play06:31

es cero igual a menos 3 escogemos

play06:33

primero un valor de h igual a 0.2 en el

play06:35

intervalo de 0,1

play06:40

como podemos ver en la siguiente gráfica

play06:42

la curva solución numérica del método de

play06:45

julen mejorado es más cercana a la curva

play06:47

solución exacta de la ecuación

play06:49

diferencial que la curva solución

play06:51

numérica del método de yulia usando para

play06:53

ambos casos un mismo tamaño de paso h

play06:56

igual a 0.2 ya hemos visto para qué y

play06:59

cómo funcionan los métodos numéricos de

play07:01

euler y julen mejorado existe un tercer

play07:03

método que es aún más exacto que los dos

play07:06

anteriores este método es el método de

play07:08

ruta de este último método de los dos

play07:11

tratados en este vídeo consiste el

play07:13

proyecto final de la materia de

play07:15

cuestiones diferenciales muchas gracias

play07:17

por su atención

Rate This

5.0 / 5 (0 votes)

Related Tags
Numerical MethodsDifferential EquationsEuler MethodImproved EulerMathematics18th CenturyLeonard EulerApproximationAlgorithmsEducational