Introducción a la robótica: Posición, orientación y tramas

Maestro Camacho - Mecatrónica & Manufactura
1 Feb 202208:27

Summary

TLDRThis video script delves into the fundamentals of robotics, focusing on the description of a point's position and orientation in space with respect to a coordinate system. The master explains the use of position vectors and rotation matrices to define a robot's arm orientation, emphasizing the importance of accurately representing both position and orientation. The concept of a 'transform', a set of four vectors encompassing position and orientation data, is introduced. The script also touches on the application of these principles in robotic arms, highlighting the kinematic chain's representation through coordinate systems and the practicality of using transforms for various robotic systems.

Takeaways

  • 📍 The script introduces the concept of describing a point's position in space with reference to a coordinate system, specifically the A and Y coordinate system.
  • 🔄 The point P can be represented by coordinates (x, y, z) in a right-handed coordinated system, with the superscript 'a' indicating reference to the A coordinate system.
  • 🚦 The description of orientation is more complex than position and requires not one but three vectors to fully describe the orientation of a robotic arm or end effector.
  • 📊 A 3x3 matrix, represented by 'R', is used to describe the orientation, which is essentially a rotation matrix from system A to system B.
  • 🔢 The elements of the rotation matrix R are the projections of the principal vectors of system B onto the elements of system A, calculated using dot product and trigonometric functions.
  • ⏬ The script explains that the rotation matrix R can also be represented as the transpose of matrix R, when analyzed by rows instead of columns.
  • 🔍 By analyzing the rotation matrix by columns and rows, insights into the projections of the system B's vectors onto system A's vectors are gained.
  • 💠 The term 'transform' (trama in Spanish) is introduced as a set of four vectors providing information about position and orientation, consisting of a 3x3 rotation matrix and a position vector.
  • 🔄 The transform allows representing any coordinate system relative to a previous or 'base' coordinate system, which is crucial in robotics for representing the kinematic chains of an articulated robotic arm.
  • 📈 The script concludes by emphasizing the practical application of transforms in robotics, particularly in understanding the relationship between different coordinate systems in the context of a robotic arm.

Q & A

  • What is the main topic of the video?

    -The main topic of the video is the description of the position and orientation of a point in space with reference to a coordinate system, specifically focusing on robotics.

  • How is a point represented in a coordinate system?

    -A point is represented by its coordinates with respect to a given coordinate system. In the video, the point P is represented by its coordinates (x, y, z) in the A coordinate system.

  • What are the three axes of a right-handed coordinate system mentioned in the video?

    -The three axes of a right-handed coordinate system mentioned are the x, y, and z axes.

  • Why is it necessary to describe the orientation in robotics?

    -Describing the orientation is necessary in robotics because a robotic arm or end effector can be rotated in any direction while keeping a point stationary, and this rotation needs to be accounted for in addition to the position.

  • How many vectors are required to fully describe the orientation of a system?

    -Three vectors are required to fully describe the orientation of a system, which together form a 3x3 matrix.

  • What does the 3x3 matrix represent in the context of the video?

    -The 3x3 matrix represents a rotation matrix, which describes the orientation of one coordinate system (B) with respect to another (A). It is a mathematical representation of how the basis vectors of one system are projected onto the other system.

  • How is the rotation matrix (R) related to the transpose of the matrix?

    -The rotation matrix (R) is the transpose of the matrix because when analyzed by rows instead of columns, it represents the projection of the basis vectors of one system onto the other, thus giving the orientation of one system with respect to the other.

  • What is a transformation matrix (or 'trama' in Spanish) in robotics?

    -A transformation matrix, or 'trama', is a set of four vectors that provide information about both the position and orientation of a coordinate system. It consists of a 3x3 rotation matrix and a position vector.

  • How many coordinate systems can be represented in relation to the initial system?

    -Multiple coordinate systems can be represented in relation to the initial system. Each subsequent system can be described with respect to the previous one, forming a chain of transformations.

  • What does the base system (system U) represent in the context of a robotic arm?

    -In the context of a robotic arm, the base system (system U) represents the fixed part of the arm where the coordinate system origin is placed, and it is the reference point for the rest of the moving segments in the robotic chain.

  • How are the transformation matrices used in the kinematic chain of a robotic arm?

    -Transformation matrices are used to represent the position and orientation of each link in the kinematic chain of a robotic arm with respect to the previous link. They help in calculating the overall position and orientation of the end effector.

Outlines

00:00

🤖 Introduction to Coordinate Systems and Robotic Arm Orientation

This paragraph introduces the concept of describing a point's position in space with respect to a coordinate system, specifically the A coordinate system. It explains how a point P can be represented by coordinates in the X, Y, and Z axes within a right-handed coordinate system. The paragraph further delves into the complexity of describing orientation, differentiating it from position. It highlights the need for not just one vector but three vectors (xv, yv, zv) to fully describe orientation, resulting in a 3x3 matrix. The explanation includes understanding the projection of the coordinate system's basis vectors onto each other and introduces the rotation matrix (R) as a representation of orientation, emphasizing its significance in robotics.

05:00

📐 Understanding the Spatial Representation of Coordinate Systems and Dexterity in Robotics

This paragraph continues the discussion on coordinate systems by explaining how the orientation of one coordinate system (B) is represented with respect to another (A). It describes the process of obtaining the orientation matrix (R) through vector projections and how this matrix can be transposed to represent the inverse relationship. The concept of a 'frame', a set of four vectors providing information about position and orientation, is introduced. The paragraph clarifies that the position is given by a vector (pdv), and the orientation is given by a 3x3 rotation matrix. It concludes by illustrating how multiple frames can be used within a robotic arm to represent the kinematic chain, with each frame's origin and vectors representing the links of the arm.

Mindmap

Keywords

💡Robotics

Robotics is the branch of technology that deals with the design, construction, operation, and use of robots. In the context of the video, it is the main theme, as the speaker, 'Maestro Camacho', discusses various concepts related to robotic arms and their movements in space.

💡Coordinate System

A coordinate system is a geometrical framework that enables the precise determination of the position of points. In the video, the speaker introduces a coordinate system referred to as 'A' and explains how points, like the robotic arm's end effector, can be described in terms of their coordinates within this system.

💡Position

Position refers to the specific location of an object within a reference frame or coordinate system. In the video, the description of a point's position is crucial for understanding where the robotic arm or its end effector is located in space.

💡Orientation

Orientation is the alignment or posture of an object in space, which is as important as its position in robotics. The video discusses how the orientation of a robotic arm can vary, and it requires a more complex description than position, involving three vectors instead of one.

💡Transformation Matrix

A transformation matrix is a mathematical tool used in robotics to describe the position and orientation of a coordinate system relative to another. It encapsulates both the translation (position) and rotation (orientation) of a frame in space.

💡End Effector

The end effector is the part of a robotic arm that interacts with the environment, such as a gripper or tool. In the video, the end effector is used as an example to illustrate the concepts of position and orientation in space.

💡Chain of Motion

The chain of motion refers to the sequence of links or joints in an articulated robotic arm that allows it to move. In the video, the chain of motion is implied when discussing the representation of different coordinate systems along the arm.

💡Basis Vectors

Basis vectors are the fundamental unit vectors that define a coordinate system. They are used to express any other vector in the space spanned by the coordinate system. In the video, the basis vectors of one coordinate system are projected onto the basis vectors of another to describe orientation.

💡Vector

A vector is a mathematical object that represents both a direction and a magnitude. In the context of the video, vectors are used to describe positions and orientations in three-dimensional space.

💡Dot Product

The dot product is a binary operation that takes two vectors and returns a scalar value. It is used in the video to calculate the projections of the basis vectors onto each other when constructing the transformation matrix.

💡Transposition

Transposition is the process of converting a matrix from its original form to its transpose, which involves interchanging the rows and columns. In the video, the transposition of the transformation matrix 'R' is mentioned as being equivalent to 'R^T'.

Highlights

Introduction to robotics and coordinate systems, specifically the A and B coordinate systems.

Description of a point's position in space with respect to a coordinate system.

Representation of point P in terms of coordinates with respect to the reference system.

Explanation of the orientation description being more complex than position description.

Requirement of three vectors, not one, to fully describe orientation.

Introduction of the 3x3 matrix representing the orientation of system V with respect to system A.

Clarification that the elements of the matrix represent the projection of the main vectors of the coordinate system.

Explanation of the dot product and its role in vector projection.

The notation R for the rotation matrix and its representation of the orientation of system V with respect to system A.

The transposition of matrix R to obtain the orientation of system A with respect to system B.

Description of the transformation matrix (frame) and its components: position and orientation.

The position vector (p_A) and its representation of the coordinates of the frame's origin.

Application of frames in robotics, particularly in the kinematic chains of an arm.

Use of the transformation matrix equation to represent the system with respect to a previous coordinate system.

The concept of a base or universal system and how other systems are represented with respect to it.

The practical application of the transformation matrix in the kinematic chain of a robotic arm.

Conclusion of the video and a teaser for the next topic.

Transcripts

play00:00

hola que tal bienvenidos a un vídeo más

play00:03

de robótica soy el maestro camacho y

play00:05

comenzamos

play00:07

en esta ocasión comenzaremos haciendo

play00:10

algo que se llama descripción de la

play00:12

posición de un punto en el espacio en

play00:16

referencia a un sistema de coordenadas

play00:17

dado en este caso el sistema de

play00:20

coordenadas se llama a y tenemos los

play00:23

tres ejes ordenados la x la y y la z en

play00:27

un sistema coordinado derecho el punto p

play00:30

se puede representar o se puede

play00:32

describir en términos de la posición

play00:34

mediante una coordenada o un punto en x

play00:37

un punto en un punto en z como se

play00:40

muestra en el vector columna de la

play00:43

imagen el super índice a antes de la

play00:46

letra p indica que todas las coordenadas

play00:49

del punto p xp pz están dadas respecto

play00:54

al sistema de referencia a la

play00:56

descripción de la orientación no es tan

play00:59

simple como la descripción de la

play01:00

posición en la figura podemos observar

play01:04

un brazo robótico o el efector final de

play01:08

un brazo robótico el cual está ubicado

play01:10

en el punto p esto quiere decir que las

play01:14

coordenadas de dicho punto están

play01:15

descritas mediante posición mediante

play01:18

este vector p respecto al sistema de

play01:21

origen o al sistema de coordenadas y

play01:23

ahora para la orientación

play01:26

resulta que nosotros podemos girar este

play01:29

brazo robótico en cualquier orientación

play01:31

o en cualquier dirección y que ese punto

play01:34

ap se mantenga inmóvil es por eso que es

play01:37

necesario describir la orientación

play01:39

además de la posición para describir la

play01:42

orientación de manera completa se

play01:43

requiere no un vector sino tres vectores

play01:46

que están aquí representados por x b hb

play01:50

y aceptable

play01:52

que nos resultan en un vector de 3 por 3

play01:55

que serían 9 elementos en total donde

play01:58

cada uno de estos elementos a xv ya se

play02:01

está b representan la proyección de los

play02:06

vectores principales del sistema de

play02:08

coordenadas b que es el que está

play02:10

adherido al efector final o al brazo de

play02:12

la figura sobre cada uno de los

play02:15

elementos que conforman al sistema

play02:18

dígase x a jay-z

play02:20

que es lo que observamos en esta otra

play02:23

matriz de productos puntos ahora hay que

play02:26

entender esta anotación de la r no se

play02:29

llama r porque esto lo que en realidad

play02:31

está representando es una matriz de

play02:34

rotación que más adelante se va a

play02:36

explicar del sistema ve al sistema o

play02:39

dicho de otra manera es la

play02:40

representación de la orientación del

play02:43

sistema ve respecto al sistema y eso es

play02:46

lo que significa esta anotación y

play02:49

analizando cada uno de estos elementos

play02:50

por columnas podemos observar con

play02:53

claridad que la primera columna está

play02:56

relacionada directamente con x debe que

play02:58

ser primer elemento constitutivo del

play03:00

sistema ve en producto punto con cada

play03:04

uno de los elementos constitutivos del

play03:06

sistema que sería x a jay-z lo mismo

play03:11

ocurre en las otras dos columnas en el

play03:13

caso de la segunda columna es la

play03:15

proyección del segundo elemento

play03:18

constitutivo del sistema b que sería la

play03:20

y

play03:21

en producto punto con los tres elementos

play03:24

constitutivos del sistema a que sería la

play03:27

x a jay-z y en la tercera columna ocurre

play03:31

lo mismo pero con el tercer elemento

play03:33

constitutivo del sistema b que sería el

play03:37

vector zb entonces estos productos

play03:40

puntos se están realizando porque de

play03:42

esta manera es la forma matemática en la

play03:45

cual representamos la proyección de un

play03:47

vector sobre otro el cual pues se

play03:50

resuelve mediante esta ecuación tenemos

play03:52

una fórmula donde si tenemos el producto

play03:54

punto de dos vectores vamos a poder

play03:57

representarlo como la multiplicación de

play03:59

sus valores escalares dígase la magnitud

play04:03

de cada uno de estos vectores

play04:05

por el coseno del ángulo que se genera

play04:08

entre estos dos sectores entonces

play04:11

recordando la anotación tenemos aquí que

play04:14

la matriz r que representa a desde el

play04:17

punto de vista de ve que si se dan

play04:20

cuenta es lo inverso a lo que nosotros

play04:22

aquí estamos indicando se puede

play04:24

representar como la transposición de la

play04:27

matriz r

play04:29

dv respecto a esto porque ocurre porque

play04:32

si nosotros analizamos esta matriz en

play04:34

vez de por columnas en filas podemos

play04:38

observar que la primera fila por ejemplo

play04:41

es la proyección que hay del primer

play04:44

elemento constitutivo del sistema que es

play04:46

la x respecto a los tres vectores que

play04:50

constituyen al sistema b que sería x y y

play04:54

ceta eso en el caso de la primera fila

play04:56

en la segunda fila tendríamos el mismo

play05:00

caso nada más que respecto al segundo

play05:02

elemento constitutivo del sistema que

play05:05

sería la y

play05:07

xb el punto y punto

play05:12

y zp punto llegan y en la tercera fila

play05:15

tenemos el mismo caso pero con el tercer

play05:17

elemento constitutivo del sistema a que

play05:20

sería la zeta entonces hago la

play05:23

proyección de zeta respecto a la equis

play05:26

en b la receta de a respecto a la que

play05:29

debe y lo mismo en el tercero la z de a

play05:32

re pero respecto a la z debe entonces si

play05:37

lo observamos por filas básicamente si

play05:39

nosotros trans ponemos esta matriz

play05:41

obtendríamos precisamente la

play05:44

orientación del sistema respecto al

play05:48

sistema b que es lo que estamos viendo

play05:49

escrito de este lado

play05:51

en conjunto cuando tenemos la

play05:55

representación de la posición y la

play05:58

representación de la orientación de un

play06:00

sistema de coordenadas obtenemos un

play06:03

elemento que llamamos trama la trama es

play06:06

un conjunto de cuatro vectores como dice

play06:08

aquí que proporcionan información sobre

play06:10

la posición y la orientación la

play06:12

orientación está dada por la matriz de 3

play06:15

x 3 que vimos en la diapositiva anterior

play06:17

que sería una matriz de rotación del

play06:20

sistema b respecto al sistema

play06:23

y la posición la estamos dando mediante

play06:25

un vector que estamos llamando aquí pdv

play06:28

origen respecto a qué está aquí

play06:31

representado en la figura que es

play06:33

básicamente tres elementos x jay-z que

play06:36

nos dicen cuáles son las coordenadas del

play06:38

origen de la trama si tenemos estos dos

play06:41

elementos podemos representar cualquier

play06:43

sistema respecto a un origen oa un

play06:46

sistema de coordenadas previas

play06:49

en un brazo robótico tendremos múltiples

play06:52

tramas siempre no vamos a tener

play06:54

solamente una o dos como estamos viendo

play06:56

en los ejemplos anteriores aquí en la

play06:58

figura podemos observar un sistema que

play07:02

les llamamos sistema universal o un

play07:04

sistema base y tenemos un sistema un

play07:06

sistema b y un sistema c cada uno de

play07:09

estos sistemas tiene una representación

play07:11

respecto a los demás pero en la realidad

play07:14

lo que nos va a interesar es representar

play07:16

los todos respecto al sistema inicial

play07:19

que en este caso sería el sistema y

play07:21

entonces yo creo que aquí se puede ir

play07:23

entendiendo más fácil de qué manera se

play07:25

utilizan estas tramas dentro del ámbito

play07:28

de la robótica en el caso de que por

play07:30

ejemplo el brazo robótico o la parte

play07:33

fija de un brazo robótico normalmente es

play07:35

donde se coloca el sistema o el sistema

play07:38

de origen o el sistema universal y estos

play07:41

vectores que son básicamente la posición

play07:45

de origen del sistema en este caso el

play07:48

sistema respecto al origen u

play07:51

van a representar los eslabones de la

play07:53

cadena cinemática de un brazo articular

play07:56

entonces para el siguiente punto tenemos

play07:59

precisamente el origen respecto al

play08:01

sistema anterior que en este caso sería

play08:02

el sistema por lo tanto aquí lo que

play08:05

estamos viendo es que el sistema se

play08:06

puede representar respecto al sistema y

play08:10

el sistema se puede representar respecto

play08:12

al sistema y de la misma manera del

play08:15

sistema b se puede representar respecto

play08:17

al sistema utilizando la ecuación de

play08:20

tramas que hemos visto con anterioridad

play08:21

eso sería todo por este vídeo y nos

play08:24

vemos en el siguiente

Rate This

5.0 / 5 (0 votes)

Related Tags
Robotics BasicsKinematicsCoordinate SystemsPoint PositioningOrientationRotation MatricesMechanical EngineeringEducational ContentTechnical TutorialRobotic Arm