Lecture 3, Video 2: Efficient algorithms for linear codes

Mary Wootters
30 Mar 202108:09

Summary

TLDR在这个视频中,我们讨论了任意线性码是否存在高效算法。对于线性码C,可以实现三个高效算法:编码消息、检测错误和纠正擦除错误。然而,纠正错误的问题对于任意线性码是NP难的,因此不太可能找到多项式时间算法。虽然对任意线性码无法高效解决此问题,但可以设计特定结构的线性码,以实现快速算法。此外,这种难题在密码学中也有应用。

Takeaways

  • 😀 线性码可以高效地进行编码,即将消息从\( F_q^k \)映射到\( F_q^n \)中的码字。
  • 😀 编码映射是通过乘以生成矩阵\( G \)实现的,这是一种多项式时间内的高效算法。
  • 😀 线性码可以高效地检测最多\( d-1 \)个错误,通过使用校验矩阵\( H \)进行检验。
  • 😀 如果校验矩阵\( H \)与接收到的码字\( \tilde{c} \)的乘积为零,则认为码字是合法的;否则,认为发生了错误。
  • 😀 线性码可以高效地纠正最多\( d-1 \)个擦除错误,通过使用生成矩阵\( G \)来解决线性系统。
  • 😀 当部分坐标被擦除时,可以通过删除生成矩阵\( G \)中的相应行来形成新的线性系统,从而找到一致的码字。
  • 😀 存在唯一的解\( x \)可以解决这个线性系统,因为码的汉明距离为\( d \)。
  • 😀 通过高斯消元法或其他线性代数算法,可以在有限域上高效地解决这个线性系统。
  • 😀 对于任意线性码\( C \),可能没有一种多项式时间的算法来纠正最多\( \lfloor \frac{d-1}{2} \rfloor \)个错误。
  • 😀 最大似然解码问题(即找到与接收码字\( \tilde{c} \)最近的码字)是NP难问题,这意味着很难找到多项式时间的解。
  • 😀 尽管最大似然解码问题被认为是困难的,但这种困难性在密码学中有时是有利的,例如在下一个视频中将讨论的应用。

Q & A

  • 什么是线性码?

    -线性码是一种编码方式,其中码字的集合在有限域上形成一个向量空间。线性码的每个码字都可以表示为有限域元素的线性组合。

  • 什么是有效的算法?

    -有效的算法指的是运行时间是多项式时间的算法,即算法的运行时间与输入大小的多项式成正比。

  • 线性码的编码映射是什么?

    -线性码的编码映射是一个将消息从有限域映射到码字的函数。具体来说,它通过与生成矩阵的乘法来实现。

  • 如何检测线性码中的误差?

    -可以通过奇偶校验矩阵来检测线性码中的误差。如果一个码字乘以奇偶校验矩阵的结果为零,则该码字是合法的;否则,它可能包含误差。

  • 线性码中的错误检测和错误更正有什么区别?

    -错误检测是指识别出码字是否包含误差,而错误更正则是指找出并修正这些误差。线性码可以有效地检测最多d-1个误差,但更正这些误差通常更复杂。

  • 什么是线性码的擦除更正?

    -擦除更正是指在已知某些码字的坐标被擦除的情况下,恢复原始码字的过程。这可以通过解决由生成矩阵的子集构成的线性系统来实现。

  • 为什么最大似然解码问题是NP难的?

    -最大似然解码问题涉及找到与给定码字距离最近的码字,这是一个组合优化问题。由于其复杂性,目前没有已知的多项式时间算法可以解决这个问题。

  • 为什么计算线性码的距离是NP难的?

    -计算线性码的距离涉及到确定码字之间的最小汉明距离,这同样是一个组合优化问题,因此被认为是NP难的。

  • 为什么有些特定的线性码可以有快速的解码算法?

    -特定的线性码,如汉明码,由于其结构的特殊性,可以设计出快速的解码算法。这些算法利用了码的特定性质来简化解码过程。

  • 为什么最大似然解码问题被认为在密码学中有应用?

    -最大似然解码问题的难度可以被用来设计密码学算法,使得攻击者难以解码,从而提高安全性。

Outlines

00:00

😀 线性码的高效算法讨论

本段视频脚本讨论了任意线性码是否能够实现高效算法的问题。首先定义了线性码C和其属性,包括其在有限域Fq中的子集,以及其具有的三个主要特点:1) 存在一个高效的编码映射,将消息从Fq映射到码字;2) 能够高效检测多达d-1个错误;3) 能够高效纠正多达d-1个擦除。接着,提出了一个关键问题:是否存在一个通用的算法,能够高效地纠正最多d-1/2个错误。视频鼓励观众暂停并思考这些算法可能是什么,并解释了使用生成矩阵G进行编码和使用校验矩阵H进行错误检测的方法。最后,介绍了使用生成矩阵解决擦除问题的方法,并强调了这些算法的高效性。

05:01

😟 线性码最大似然解码问题的困难性

第二段视频脚本指出,尽管对于特定的线性码如汉明码,可能存在高效的算法来纠正错误,但对于任意线性码C,找到一个能够高效纠正最多d-1/2个错误的算法可能是不现实的。这里引入了最大似然解码问题,即给定一个可能受到干扰的码字c'和生成矩阵G,找到最接近c'的码字x。这个问题被证明是NP-hard的,意味着找到多项式时间的算法解决这个问题是非常不可能的。视频进一步解释了NP-hard问题的含义,并指出即使在已知码的情况下,这个问题也很难近似。最后,视频以一种积极的角度结束,指出虽然我们可能无法为任意线性码设计高效的算法,但我们可以在设计特定结构的线性码时利用这一困难性,例如在密码学中的应用。

Mindmap

Keywords

💡线性码

线性码是一种编码方式,其中码字是有限域上的向量,并且满足线性运算的性质。在视频中,线性码被用来讨论其编码、错误检测和纠错的能力。线性码的一个重要特性是它们可以通过生成矩阵进行编码,这使得编码过程在多项式时间内完成。

💡有效算法

有效算法指的是运行时间与问题规模成多项式关系的算法。在视频中,讨论了线性码的编码、错误检测和纠错算法是否有效。有效性是衡量算法性能的关键指标,因为它决定了算法在实际应用中的可行性。

💡生成矩阵

生成矩阵是线性码中用于将消息向量映射到码字的矩阵。在视频中,生成矩阵被用来说明如何通过矩阵乘法实现线性码的编码,这是有效算法的一个例子。生成矩阵是理解线性码结构和操作的基础。

💡错误检测

错误检测是指能够识别传输过程中是否发生错误的能力。在视频中,提到了线性码可以通过校验矩阵来检测最多d-1个错误。这是线性码的一个重要特性,因为它允许接收方知道是否有必要请求重新发送数据。

💡校验矩阵

校验矩阵是用于检测线性码中错误的一种工具。在视频中,校验矩阵被用来说明如何通过矩阵乘法检测码字是否合法。如果校验矩阵与接收到的码字的乘积为零,则认为码字没有错误。

💡擦除

擦除是指在传输过程中某些数据位被删除或丢失的情况。在视频中,讨论了线性码如何通过生成矩阵来纠正最多d-1个擦除。擦除与错误不同,因为它们是已知的丢失数据,而不是数据被错误地替换。

💡最大似然解码

最大似然解码是一种解码算法,旨在找到与接收到的码字距离最近的码字。在视频中,提到了最大似然解码问题是一个NP-难问题,这意味着找到多项式时间的解决方案是非常困难的。这个问题与线性码的错误纠正能力密切相关。

💡NP-难问题

NP-难问题是指那些已知在多项式时间内无法解决的问题,或者至少目前没有已知的多项式时间算法。在视频中,最大似然解码问题被描述为NP-难,这表明找到有效的错误纠正算法在一般情况下是非常具有挑战性的。

💡距离

在编码理论中,距离指的是码字之间的最小汉明距离。在视频中,线性码的距离d决定了它能够检测和纠正的错误数量。距离是衡量线性码性能的一个重要参数,因为它直接影响到码的可靠性。

💡设计线性码

设计线性码是指根据特定需求构造具有特定特性的线性码。在视频中,提到了尽管一般线性码的最大似然解码问题可能是NP-难的,但设计特定的、结构化的线性码可以使得解码过程更加高效。这表明在实际应用中,可以通过精心设计来克服一些理论上的难题。

💡密码学

密码学是研究加密和解密技术的学科。在视频中,提到了线性码的错误纠正难题在密码学中的实际应用。这种难题的存在可以为某些密码学系统提供安全性,因为它们使得某些攻击变得更加困难。

Highlights

讨论任意线性代码的有效算法。

编码映射是通过生成矩阵乘法实现的。

线性代码可以有效地检测多达 d-1 个错误。

使用奇偶校验矩阵来检测代码字中的错误。

线性代码可以纠正多达 d-1 个擦除。

通过删除生成矩阵的行来处理擦除。

高斯消元法可以有效地解决线性系统。

编码、错误检测和纠错是线性代码的基本功能。

讨论纠正多达 d-1/2 个错误的算法。

最大似然解码问题与纠错问题类似。

最大似然解码问题是 NP 难问题。

即使代码已知,最大似然解码问题仍然是 NP 难。

计算线性代码的距离也是 NP 难问题。

专门设计的线性代码可以有快速算法。

某些情况下,解码问题的复杂性对密码学有利。

Transcripts

play00:01

in this video we'll briefly discuss the

play00:03

extent to which arbitrary linear codes

play00:05

admit efficient algorithms

play00:10

if c is a linear code then it emits

play00:13

some efficient algorithms

play00:16

here by an efficient algorithm i mean an

play00:18

algorithm that runs in time polynomial

play00:21

and n

play00:21

the block length of the code

play00:24

in more detail suppose that c subset of

play00:28

fq to the n

play00:29

is a linear code of distance d

play00:34

then the following three things are true

play00:38

first there is an efficient encoding map

play00:41

inc which maps a message from fq to the

play00:45

k

play00:45

to a code word in fq to the n in c

play00:49

why don't you pause the video now and

play00:52

try to figure out what this encoding map

play00:53

is

play00:57

great so hopefully you've realized that

play00:58

this encoding map is just multiplication

play01:00

by a generator matrix

play01:02

g so ink maps

play01:05

x some message x

play01:08

to the code word g times x and matrix

play01:12

multiplication we can do in polynomial

play01:14

time so that's an efficient algorithm

play01:17

the second thing we can do efficiently

play01:19

for linear code is detect

play01:21

up to d minus 1 errors

play01:25

that is if we see a corrupted code word

play01:28

c twiddle which is corrupted with fewer

play01:31

than d minus one errors

play01:33

there is an efficient algorithm that

play01:34

will say hey something is up

play01:38

once again pause the video for a second

play01:40

and try to come up with this algorithm

play01:45

one way to do this is with the parity

play01:47

check matrix

play01:50

so given c twiddle and we want to know

play01:51

if c twiddle is a legit code word or if

play01:53

it's suffered up to d minus one errors

play01:56

we can just check if h times c

play02:00

twiddle is equal to zero if it is then

play02:02

we'll say that c

play02:03

twiddle is a legit code word nothing

play02:05

went wrong and if it's not

play02:06

we'll say that something went wrong once

play02:09

again this is an efficient algorithm

play02:11

because all we have to do is a matrix

play02:12

multiplication

play02:16

third there's an efficient algorithm to

play02:18

correct

play02:19

up to d minus one erasures

play02:22

once again pause the video now and try

play02:24

to come up with the algorithm

play02:29

one way is to use the generator matrix

play02:32

suppose that we see a code word with

play02:34

some erasures that

play02:35

was originally equal to g times x for

play02:38

some vector x

play02:44

so the picture looks like this and some

play02:46

of the coordinates of c

play02:47

have gotten erased let's say i don't

play02:49

know this one here

play02:51

and that one and that one

play02:54

and here when i'm coloring these in i

play02:56

just mean that they're getting colored

play02:57

over or something so they're getting

play02:58

erased

play03:00

if we think about what this does to the

play03:01

linear system effectively this is just

play03:03

sort of erasing those rows of g

play03:06

so erase that row and that row

play03:10

and that row and if we gather together

play03:13

all the information that we know

play03:15

we can form some new linear system

play03:19

where now we have a matrix g twiddle

play03:21

that we got just by removing these

play03:23

rows from g the key is that we now know

play03:27

everything in this target vector

play03:30

so a solution x to this system

play03:32

corresponds to a code word that is

play03:34

consistent with these at most d minus 1

play03:36

erasures

play03:39

we already know that there is at most

play03:41

one such

play03:42

x because this code has distance d

play03:45

and so it can handle up to d minus one

play03:47

erasures at least non-efficiently

play03:49

so we know that there's a unique

play03:50

solution x to this linear system

play03:57

okay so our algorithm is just solve the

play03:59

linear system find the unique solution

play04:03

notice that for example gaussian

play04:05

elimination or whatever your favorite

play04:06

linear algebra algorithms are

play04:08

work just fine over finite fields so we

play04:10

can still solve this system of equations

play04:12

efficiently

play04:14

so that gives us an efficient algorithm

play04:15

to correct up to d minus one erasures in

play04:18

a linear code

play04:21

so all of this is good news you give me

play04:23

a linear code any linear code

play04:25

i can do these three things efficiently

play04:27

i can encode a message

play04:28

i can detect errors and i can correct

play04:31

erasures

play04:32

this is leaving out one important thing

play04:34

i might like to do which is correcting

play04:36

errors

play04:39

so here's the question if i have an

play04:41

arbitrary linear code c

play04:43

of distance d is there an algorithm

play04:46

to correct up to the floor of d minus 1

play04:49

over 2 errors

play04:50

efficiently notice that for some

play04:54

particular codes like for example the

play04:56

hamming code

play04:57

the answer might be yes but what what

play04:59

this question is asking is can i do this

play05:01

in general for

play05:02

any linear code c

play05:05

okay so here's the bad news

play05:08

the bad news is probably not the answer

play05:11

is probably no

play05:14

in more detail consider the following

play05:16

problem

play05:18

given some c twiddle in fq to the n

play05:22

and a generator matrix g and f q to the

play05:25

n

play05:25

times k find x

play05:28

in fq to the k that minimizes the

play05:32

hamming distance

play05:33

between c twiddle and g times x

play05:41

that is the problem is given c twiddle

play05:44

find the code word in c that is closest

play05:46

to c twiddle

play05:47

this problem is called the maximum

play05:49

likelihood decoding problem

play05:54

notice that solving this problem is

play05:57

pretty similar to being able to correct

play05:58

up to d minus one over two errors

play06:00

efficiently

play06:01

in particular if we could solve this

play06:03

problem we would be able to correct this

play06:04

many errors

play06:07

unfortunately this problem is np-hard

play06:12

if you don't know what np-hard means

play06:14

that's okay informally what it means

play06:16

is that it's really unlikely that we're

play06:19

going to find a polynomial time

play06:20

algorithm that solves this problem

play06:22

for a worst-case code c if you're

play06:25

curious in fact the problem is np-hard

play06:28

even if the code is known in advance and

play06:30

with arbitrary pre-processing time

play06:32

moreover it's also np hard to

play06:34

approximate

play06:35

in fact even computing the distance of

play06:37

linear code given the generator matrix

play06:39

is np hard

play06:42

so this problem and a lot of problems

play06:44

surrounding it

play06:45

are hard so they take away

play06:49

is that we are not likely

play06:52

to find a polynomial time algorithm for

play06:54

this task

play06:57

here when i say not likely and probably

play07:00

not

play07:00

i'm referring to the fact that we don't

play07:02

actually know whether or not

play07:04

p is equal to np if you know what that

play07:05

means so it could be the case

play07:08

that someday someone finds a polynomial

play07:10

time algorithm but that would imply some

play07:11

really weird things in complexity theory

play07:15

okay so that's the bad news we're

play07:16

probably not going to be able to solve

play07:18

this problem efficiently

play07:19

for a arbitrary linear code c

play07:22

however the good news

play07:26

is that we don't care about an arbitrary

play07:28

linear code c we care about a linear

play07:30

code that we get to design

play07:35

going forward we're going to focus a lot

play07:37

of our time on trying to design

play07:39

specific special structured linear codes

play07:42

that

play07:43

do admit fast algorithms but wait

play07:46

there's more good news

play07:49

the more good news is that actually

play07:51

sometimes it's kind of convenient

play07:54

that this problem is thought to be hard

play08:00

in the next video we'll see an

play08:01

application to cryptography

play08:03

which relies on this fact

Rate This

5.0 / 5 (0 votes)

Étiquettes Connexes
线性码算法编码错误检测纠正擦除最大似然解码复杂性理论多项式时间NP难题密码学
Besoin d'un résumé en anglais ?