TRIGONOMETRI (Konversi Koordinat Kutub Ke Koordinat Kartesius)

Gongbu Channel
19 Feb 202104:33

Summary

TLDRThis educational video explains the process of converting polar coordinates to Cartesian coordinates using an example. The polar coordinates (r = 20, θ = 120°) are given, and the video demonstrates step-by-step how to calculate the corresponding Cartesian coordinates (x, y) using trigonometric functions. The explanation covers the formulas for x = r * cos(θ) and y = r * sin(θ), showing the calculations and the reasoning behind each step. The final result is Cartesian coordinates (-10, 10√3), with an emphasis on understanding the relationship between angles and trigonometric values in different quadrants.

Takeaways

  • 😀 The script explains how to convert polar coordinates to Cartesian coordinates.
  • 😀 The given polar coordinates in the example are 20, 120°, where 20 is the radius (r) and 120° is the angle (θ).
  • 😀 Cartesian coordinates are represented as (x, y), and the goal is to find the values of x and y.
  • 😀 To calculate x, the formula used is x = r * cos(θ).
  • 😀 For θ = 120°, since it is not a standard angle in trigonometric tables, the cosine value is calculated using the relationship with 180°.
  • 😀 The angle 120° is in the second quadrant, and thus cos(120°) is negative.
  • 😀 cos(60°) is used to compute cos(120°), and the result is -1/2.
  • 😀 The value of x is calculated as x = 20 * (-1/2), which equals -10.
  • 😀 To calculate y, the formula used is y = r * sin(θ).
  • 😀 For θ = 120°, sin(120°) is positive in the second quadrant, and sin(60°) is used for the calculation.
  • 😀 The value of sin(60°) is √3/2, so y = 20 * (√3/2), which simplifies to 10√3.

Q & A

  • What are polar coordinates?

    -Polar coordinates are a system of coordinates used to specify the position of a point in a plane by using a radius (r) and an angle (θ). The radius is the distance from the origin, and the angle is the direction from the origin in terms of a standard reference angle.

  • What does the script explain in terms of converting polar coordinates to Cartesian coordinates?

    -The script explains the process of converting polar coordinates to Cartesian coordinates by using the formulas x = r * cos(θ) and y = r * sin(θ).

  • What is the given polar coordinate in the script?

    -The given polar coordinate in the script is (r = 20, θ = 120°).

  • How is the x-coordinate calculated in the conversion?

    -To calculate the x-coordinate, the formula x = r * cos(θ) is used. For θ = 120°, it is necessary to first calculate cos(120°), which equals -1/2. Then, x = 20 * (-1/2) = -10.

  • Why is cos(120°) negative?

    -Cos(120°) is negative because 120° lies in the second quadrant of the unit circle, where cosine values are negative.

  • How is the y-coordinate calculated in the conversion?

    -To calculate the y-coordinate, the formula y = r * sin(θ) is used. For θ = 120°, it is necessary to first calculate sin(120°), which equals √3/2. Then, y = 20 * (√3/2) = 10√3.

  • What quadrant is the angle of 120° located in, and how does this affect the signs of trigonometric functions?

    -The angle of 120° is located in the second quadrant, where cosine is negative and sine is positive. This affects the signs of the trigonometric functions when calculating the x and y coordinates.

  • What is the final Cartesian coordinate after conversion?

    -The final Cartesian coordinate after the conversion is (-10, 10√3).

  • Why is it important to understand the quadrant when converting polar to Cartesian coordinates?

    -Understanding the quadrant is important because it helps determine the correct signs for the trigonometric functions, which are essential in accurately calculating the Cartesian coordinates.

  • What mathematical identity is used to simplify the calculation of sine and cosine values for 120°?

    -The script uses the identity cos(180° - 60°) and sin(180° - 60°) to simplify the calculation of cos(120°) and sin(120°), where 120° is expressed in terms of 60° to use known values from trigonometric tables.

Outlines

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Mindmap

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Keywords

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Highlights

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Transcripts

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant
Rate This

5.0 / 5 (0 votes)

Étiquettes Connexes
polar coordinatesCartesian coordinatestrigonometrymath tutorialhigh schoolcoordinate conversiongeometrymath educationtrigonometric functionsmath class
Besoin d'un résumé en anglais ?