Jumlah dan selisih dua sudut trigonometri matematika kelas XI

Matematika Hebat
29 Sept 202222:02

Summary

TLDRThis educational video provides a comprehensive tutorial on solving trigonometric problems involving sum and difference of angles. The content is tailored for 11th-grade mathematics, covering formulas for sine, cosine, tangent functions, and practical examples. The video explains the application of these formulas with step-by-step solutions to problems like Sin 75°, Sin 165°, cos 105°, and Tan 105°, among others. By using special angles and simplifying the results, the presenter helps students grasp the key concepts in an easy-to-understand manner, encouraging viewers to engage with and share the content.

Takeaways

  • 😀 The script introduces the topic of 'Sum and Difference of Two Trigonometric Angles' for high school math students.
  • 😀 It begins with a reminder for viewers to like, subscribe, comment, and share the video.
  • 😀 The formula for the sum of angles in sine is presented: Sin(α + β) = Sin(α) * Cos(β) + Cos(α) * Sin(β).
  • 😀 The formula for the difference of angles in sine is also shown: Sin(α - β) = Sin(α) * Cos(β) - Cos(α) * Sin(β).
  • 😀 Examples are provided to illustrate the use of these formulas, such as Sin(75°) and Sin(165°).
  • 😀 For Cosine, the sum formula is Cos(α + β) = Cos(α) * Cos(β) - Sin(α) * Sin(β), and the difference formula is Cos(α - β) = Cos(α) * Cos(β) + Sin(α) * Sin(β).
  • 😀 Example problems using Cosine include Cos(105°) and Cos(15°), applying the appropriate formulas for sum and difference of angles.
  • 😀 The script also discusses the Tangent formulas: Tan(α + β) = (Tan(α) + Tan(β)) / (1 - Tan(α) * Tan(β)) and Tan(α - β) = (Tan(α) - Tan(β)) / (1 + Tan(α) * Tan(β)).
  • 😀 Examples for Tangent are given, such as Tan(105°) and Tan(75°), showing how to break them down into known angles for easier calculation.
  • 😀 The video concludes with a closing remark wishing that the tutorial is useful and encouraging further interaction from the viewers.

Q & A

  • What is the formula for the sum of two angles in sine?

    -The formula for the sum of two angles in sine is: Sin(α + β) = Sin(α) * Cos(β) + Cos(α) * Sin(β).

  • How do you calculate Sin(75°) using the sum of angles formula?

    -To calculate Sin(75°), you can break it down as Sin(30° + 45°), both of which are special angles. Using the formula for the sum of sine, the result is 1/4 * (√2 + √6).

  • What is the formula for the difference of two angles in sine?

    -The formula for the difference of two angles in sine is: Sin(α - β) = Sin(α) * Cos(β) - Cos(α) * Sin(β).

  • How do you calculate Sin(165°) using the difference of angles formula?

    -For Sin(165°), you can express it as Sin(210° - 45°). Using the difference formula, the result is 1/4 * (√6 - √2).

  • What is the formula for the sum of two angles in cosine?

    -The formula for the sum of two angles in cosine is: Cos(α + β) = Cos(α) * Cos(β) - Sin(α) * Sin(β).

  • How do you calculate Cos(105°) using the sum of angles formula?

    -To calculate Cos(105°), you can express it as Cos(60° + 45°). Using the sum of cosine formula, the result is 1/4 * (√2 - √6).

  • What is the formula for the difference of two angles in cosine?

    -The formula for the difference of two angles in cosine is: Cos(α - β) = Cos(α) * Cos(β) + Sin(α) * Sin(β).

  • How do you calculate Cos(15°) using the difference of angles formula?

    -For Cos(15°), you can express it as Cos(45° - 30°). Using the difference formula, the result is 1/4 * (√6 + √2).

  • What is the formula for the sum of two angles in tangent?

    -The formula for the sum of two angles in tangent is: Tan(α + β) = (Tan(α) + Tan(β)) / (1 - Tan(α) * Tan(β)).

  • How do you calculate Tan(105°) using the sum of angles formula?

    -To calculate Tan(105°), you can express it as Tan(60° + 45°). Using the sum of tangent formula, the result is simplified and involves rationalizing the denominator to give the final result.

Outlines

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Mindmap

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Keywords

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Highlights

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant

Transcripts

plate

Cette section est réservée aux utilisateurs payants. Améliorez votre compte pour accéder à cette section.

Améliorer maintenant
Rate This

5.0 / 5 (0 votes)

Étiquettes Connexes
MathematicsTrigonometryHigh SchoolAngle SumAngle DifferenceMath TutorialLearningEducationMathematical FormulasStudent ResourcesTrigonometric Identity
Besoin d'un résumé en anglais ?