Cell Membranes

Bozeman Science
8 Jul 201111:04

Summary

TLDRIn this Biology Essentials video, Mr. Andersen explores the cell membrane, focusing on its selective permeability and the fluid mosaic model. He explains the role of phospholipids, cholesterol, and proteins in maintaining membrane structure and function. The video also delves into the process of DNA extraction from a banana, illustrating the membrane's lipid composition. Additionally, it highlights the presence of cell walls in plants, bacteria, and fungi, which provide extra protection and rigidity, contrasting with the lack of cell walls in animal cells.

Takeaways

  • 🔬 Extracting DNA from a banana is a simple demonstration to illustrate the concepts of cell membranes.
  • 🧼 Soap dissolves cell membranes because they are made of lipids, releasing DNA from the cell.
  • 🧬 Cell membranes are selectively permeable, regulating what enters and exits the cell.
  • 🧩 The fluid mosaic model describes the cell membrane as a dynamic structure composed of various components, primarily phospholipids and proteins.
  • 💧 Phospholipids are amphipathic, with hydrophilic heads and hydrophobic tails, allowing them to form a bilayer.
  • 🏞 Cholesterol in the membrane helps maintain its fluidity by preventing phospholipids from drifting apart or clumping together.
  • 🍬 Glycoproteins and glycolipids, which include sugars, play roles in cell signaling and immune responses.
  • 🌬 Small, uncharged molecules like oxygen and carbon dioxide can easily diffuse through the membrane.
  • 🛡 Proteins in the membrane assist in transporting larger or charged molecules through facilitated diffusion or active transport.
  • 🌱 Cell walls, found in plants, bacteria, and fungi, provide additional protection and structure, differing in composition (e.g., cellulose in plants, peptidoglycan in bacteria, chitin in fungi).

Q & A

  • What is the purpose of adding shampoo to a banana when extracting DNA?

    -The shampoo is used to dissolve the cell and nuclear membranes, which are made of lipids, allowing the release of DNA from the mushy interior of the banana.

  • Why is the DNA extraction process from a banana a good demonstration for understanding the structure of cell membranes?

    -The process illustrates the lipid nature of cell membranes, showing how soap, which dissolves lipids, can release DNA, indicating that the cell membrane is made up of fats.

  • What is the term used to describe the cell membrane's ability to regulate what enters and exits the cell?

    -Selective permeability is the term that describes the cell membrane's ability to control the passage of substances into and out of the cell.

  • What is the fluid mosaic model and how does it relate to the cell membrane's structure?

    -The fluid mosaic model is the current understanding of the cell membrane's structure, which consists of a mosaic of different components that are fluid and constantly moving, allowing for the transport of substances.

  • What are the main components of the cell membrane?

    -The main components of the cell membrane are phospholipids, proteins, cholesterol, glycoproteins, and glycolipids.

  • Why are phospholipids considered amphipathic?

    -Phospholipids are amphipathic because they have a polar, hydrophilic head and a nonpolar, hydrophobic tail, allowing them to interact with both water and nonpolar substances.

  • How do proteins in the cell membrane contribute to selective permeability?

    -Proteins in the cell membrane regulate transport by acting as channels or transporters for larger or charged molecules, facilitating their movement across the membrane.

  • What is the role of cholesterol in the cell membrane?

    -Cholesterol plays a crucial role in maintaining the fluidity and stability of the cell membrane by preventing phospholipids from drifting apart too quickly in warm temperatures and keeping them apart to avoid crowding in cold temperatures.

  • What is the function of glycoproteins and glycolipids in the cell membrane?

    -Glycoproteins, which have sugar chains attached, are often involved in cell recognition and immune responses, while glycolipids, which have sugars attached to lipids, are important for cell signaling.

  • How do aquaporins help in the movement of water across the cell membrane?

    -Aquaporins are channel proteins that allow water molecules to pass through the cell membrane by providing a tight binding site, thus facilitating the movement of water despite its polar nature.

  • What is the difference between cell membranes and cell walls in terms of providing protection and structure?

    -Cell membranes provide selective permeability and regulate the passage of substances, while cell walls, found in plants, bacteria, and fungi, offer additional structural support and protection, preventing the cell from bursting under pressure.

Outlines

00:00

🧬 DNA Extraction and Cell Membrane Basics

In this segment, Mr. Andersen introduces the topic of the cell membrane through a simple DNA extraction demonstration using a banana. He explains the presence of DNA within the nucleus of a eukaryotic cell, which is enclosed by the nuclear membrane and the cell membrane. The use of shampoo in the DNA extraction process is highlighted as a means to dissolve the lipid-based cell membranes, releasing the DNA. This leads into a discussion about the fluid mosaic model of cell membranes, emphasizing their selective permeability and the role of phospholipids and proteins in regulating the passage of substances into and out of the cell.

05:01

📚 Understanding the Fluid Mosaic Model and Membrane Components

This paragraph delves deeper into the structure of the cell membrane, focusing on the fluid mosaic model. It explains the dynamic nature of the membrane, where phospholipids and proteins are in constant motion, allowing for the transport of substances. The paragraph also discusses the role of cholesterol in stabilizing the membrane and preventing it from falling apart at high temperatures, as well as its function in maintaining the appropriate distance between phospholipids at low temperatures. Additionally, it touches on glycoproteins and glycolipids, their importance in cell signaling, and the presence of various proteins that facilitate the transport of larger or charged molecules across the membrane.

10:05

🌿 The Role of Cell Walls in Selective Permeability and Structural Integrity

The final paragraph discusses the additional layer of protection and structural support provided by cell walls in certain organisms, such as plants, bacteria, and fungi. It contrasts these with animal cells, which lack cell walls and rely solely on the cell membrane. The paragraph describes how the cell wall, composed of cellulose in plants, peptidoglycan in bacteria, and chitin in fungi, contributes to the rigidity of the cell and prevents it from bursting when water enters. It also mentions that the cell wall is often the target of antibiotics, which exploit its unique chemical composition to kill bacteria.

Mindmap

Keywords

💡Cell Membrane

The cell membrane, also known as the plasma membrane, is a selectively permeable barrier that surrounds the cell's contents. It's crucial for maintaining the cell's internal environment and controlling the passage of substances in and out of the cell. In the video, the cell membrane is described as being made up of lipids and proteins, which allow for selective permeability, a key concept in understanding how cells regulate the movement of substances.

💡DNA Extraction

DNA extraction is a process used to separate DNA from other cellular components. In the script, Mr. Andersen uses the example of extracting DNA from a banana to illustrate the presence of DNA within the cell nucleus and how it can be released with the help of a detergent like shampoo, which dissolves the cell and nuclear membranes.

💡Nucleus

The nucleus is a membrane-bound organelle found in eukaryotic cells that contains the cell's genetic material, or DNA. It is enclosed by the nuclear membrane, which is a double-layered lipid bilayer similar to the cell membrane. The script mentions the nucleus as the location where DNA is stored and how it is released during the DNA extraction process.

💡Lipids

Lipids are a broad group of organic molecules that include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, and triglycerides. In the context of the video, lipids are the main components of the cell membrane, forming a bilayer due to their amphipathic nature, with hydrophilic heads and hydrophobic tails.

💡Selective Permeability

Selective permeability refers to the cell membrane's ability to allow certain molecules to pass through while restricting others. This property is essential for the cell to maintain its internal environment and control the transport of substances. The script explains how the cell membrane achieves selective permeability through its composition of lipids and proteins.

💡Fluid Mosaic Model

The fluid mosaic model is a widely accepted concept that describes the structure of the cell membrane. It suggests that the membrane is a fluid combination of various molecules, including phospholipids, proteins, cholesterol, and carbohydrates, which are free to move laterally within the membrane. This model is mentioned in the script to explain the dynamic nature of the cell membrane.

💡Phospholipids

Phospholipids are a class of lipids that form the structural basis of all cell membranes. They are amphipathic, meaning they have both hydrophilic (water-attracting) and hydrophobic (water-repelling) regions. In the script, phospholipids are described as having a dual nature that allows them to arrange themselves into a bilayer, with the hydrophilic heads facing the aqueous environments inside and outside the cell, and the hydrophobic tails forming the interior of the membrane.

💡Proteins

Proteins in the cell membrane play a crucial role in transport and communication. They can be integral or peripheral, and their functions include acting as channels for substances to pass through the membrane, as receptors for signaling molecules, or as enzymes. The script discusses how proteins facilitate the movement of larger or charged molecules across the membrane.

💡Cholesterol

Cholesterol is a type of lipid found in cell membranes that helps regulate the fluidity and stability of the membrane. It prevents the fatty acid chains of phospholipids from clumping together in cold temperatures and keeps them from moving too far apart in warm temperatures. In the script, cholesterol is highlighted for its important role in maintaining the cell membrane's integrity.

💡Glycoproteins and Glycolipids

Glycoproteins and glycolipids are molecules that have carbohydrates (sugars) attached to either proteins or lipids, respectively. They play a role in cell recognition and signaling. Glycoproteins, like antibodies, are involved in the immune response, while glycolipids are involved in cell-cell interactions and signaling. The script mentions these molecules as components of the cell membrane that contribute to its complex functions.

💡Cell Wall

A cell wall is a structural layer outside the cell membrane in plants, fungi, and bacteria. It provides additional protection and rigidity to the cell. The script explains that while all living things have cell membranes, not all have cell walls. It differentiates between the composition of plant cell walls (made of cellulose), bacterial cell walls (made of peptidoglycan), and fungal cell walls (made of chitin).

Highlights

Introduction to extracting DNA from a banana using shampoo.

Explanation of the DNA's location in a eukaryotic cell and the role of the nuclear membrane.

Description of how soap dissolves cell and nuclear membranes to release DNA.

Introduction to the cell membrane's structure and function.

Explanation of the fluid mosaic model of the cell membrane.

Discussion of the roles of cholesterol, glycoproteins, and glycolipids in the cell membrane.

Detailed description of phospholipids and their amphipathic nature.

Explanation of how small and uncharged particles move through the cell membrane.

Role of proteins in regulating transport across the cell membrane.

Importance of selective permeability in all cells.

Differences in cell membrane and cell wall structure among plant, bacterial, and fungal cells.

Role of cholesterol in maintaining cell membrane integrity at different temperatures.

Function of glycoproteins and glycolipids in cell signaling and immune response.

Explanation of facilitated diffusion and the role of channel proteins.

Discussion of aquaporins and their role in water transport across the cell membrane.

Transcripts

play00:04

Hi. It's Mr. Andersen and welcome to Biology Essentials video number 15. This

play00:09

is on the cell membrane. One of my favorite demonstrations to do for people who don't

play00:14

know a lot about biology is to extract the DNA from a banana. It's really simple. If

play00:20

you were to google it you could find a quick recipe for taking DNA out of a banana. The

play00:26

first step though is to add shampoo to it. And that's confusing to people. But if you

play00:31

have an understanding of the DNA, where it's found and then how a cell is organized, it

play00:37

shouldn't be that confusing. So the DNA sits here in the inside of a nucleus in a eukaryotic

play00:42

cell. It's surrounded by a cell membrane. We call the that nuclear membrane. And then

play00:48

the cell itself if surrounded by another cell membrane. Now if it's a plant cell it's going

play00:54

to be cell wall around the outside. But on the inside of the DNA it's pretty mushy. And

play00:58

you can get through that really quickly with just a blender. So if you add soap to that,

play01:03

what does that do? Well the soap is going to dissolve the membrane. It's going to dissolve

play01:09

the nuclear membrane and it's going to release the DNA, which you can eventually add to alcohol

play01:13

and get it to come out of solution. Now why is a membrane really easily dissolved by soap?

play01:19

It's because it's made of lipids. It's made up of fats. So it tells you a little bit about

play01:23

the structure of cell membranes. And so in this video I'm going to talk about selective

play01:27

permeability. What does that mean? It's that cells only allow certain things in and certain

play01:33

things out. And it can regulate what gets in and what gets out of a cell. And it does

play01:39

that using the cell membrane. Now our understanding of cell membrane is what's called the fluid

play01:43

mosaic model. And I'll talk more specifically about that in just a second. Now there are

play01:48

a few things, cholesterol, glycoproteins and glycolipids that are found within the cell

play01:54

membrane that are important. But the majority of the important things in a cell membrane

play01:58

are the phospholipids. Those are going to be the fats. And then the proteins. And so

play02:03

the phospholipids are amphipathic. That means they have a part that likes water and a part

play02:07

that hates water. Or they have dual nature. And what they do is they allow small and uncharged

play02:12

particles to move through it. And proteins are going to be found within the membrane.

play02:18

What they mostly do is regulate transport. What can get through and what can't. And they

play02:22

allow things that are bigger and charged to actually get through. And so selective permeability

play02:27

in all cells is formed through the cell membrane. And all living things have cell membranes.

play02:33

Now not all living things have cell walls. That gives them more structure. And so I'll

play02:37

show you a picture of a plant cell and the cell wall in that. Also pictures of bacterial

play02:43

and fungal cell walls. But animals don't have cell walls. We just have that cell membrane

play02:47

around the outside. Okay. So let's start with the parts of the cell membrane. Again I said

play02:53

that the cell membrane is, our understanding of it is that it's a fluid mosaic model. Let's

play02:59

first start with the mosaic. What does mosaic mean? It's made up of a number of different

play03:03

things. And if you look at this, the first time you actually look at a picture of a cell

play03:07

membrane or a diagram of it, you should be blown away by how complex it actually is.

play03:12

It's made up of a number of different things. And it's also fluid. What that means is that

play03:17

all of these things are moving. And so these things are called phospholipids. These are

play03:21

those fats. And so they will actually migrate. They'll float around. And so all of these

play03:27

things are influx. If we were to have a movie of it, all of these things would be floating.

play03:32

The proteins would be floating. Everything would be floating. And so it would be moving.

play03:36

And if it's not floating, if it's not fluid, then material can't actually get through.

play03:41

So that's the fluid mosaic model. It's made up of a bunch of different things and then

play03:44

it's also constantly influx or in movement. There's a few things on here that I would

play03:50

like to point out before I actually talk just about phospholipids and proteins. And those

play03:55

would be, let's start with cholesterol. Let's see if I can find cholesterol. Here's a cholesterol

play03:59

molecule right here. Cholesterol molecule we like to, most people think of cholesterol

play04:04

as bad, but it actually has a huge role inside our membranes. What it does is it'll actually

play04:10

connect phospholipids together. And so what that does is it keeps the phospholipids from

play04:15

drifting apart too quickly. And so when you get hot or when the temperature increases,

play04:20

our cell membranes would start to fall apart if it weren't for cholesterol kind of grabbing

play04:24

those phospholipids and holding them together. The other role that cholesterol does, it actually

play04:29

keeps them apart so that they can't get too close. So as the cell membrane gets too cold,

play04:33

cholesterol keeps those things apart. So cholesterol actually has a really important role inside

play04:38

the cell membrane. Another thing here, we've got the glycoprotein. Glycoprotein is made

play04:43

up of two things. Protein, which is going to be inside the membrane and then this glyco

play04:46

means sugar. So it's going to have these strings of sugars on the outside. Glycoproteins, probably

play04:52

the most famous one that you're familiar with are what are called antibodies. Antibodies,

play04:57

which are important in the immune response are actually a form of a glycoprotein. And

play05:01

then another thing would be glycolipids. Let's see if I can find a glycolipid. Oh here it

play05:06

is. Glycolipid right here. Glyoclipid is going to be a fat, but it's also going to have sugars

play05:12

attached on the outside. And glycolipids are important when we have signaling. So if I

play05:16

have a molecule that's coming in and it's going to attach to this and maybe I want to

play05:20

take some of that molecule in, there are going to be an attachment, almost like a key in

play05:26

a lock between that molecule and the glycolipid. And so there's a number of different things

play05:31

on a cell membrane. I'll talk more about those later when we talk about cells. But right

play05:35

now I want to talk about two, phospholipids and then proteins. So phospholipid, lipids

play05:41

are one of those major macromolecules that we have in all living things. But what's interesting

play05:46

about phospholipid is that it has two parts to it. Okay, phospholipids are fats. And so

play05:53

like any fat, most of the phospholipid is actually made up of carbon and hydrogen or

play05:59

it's a hydrocarbon. And so that's half of the phospholipid. But what makes it different

play06:03

from other lipids is that it has a head that has a charge to it. In other words, the head

play06:10

has a charge. And that has a result of a phosphate group that it has on the inside. So this is

play06:16

charged. And then there's no charge on the inside. Or another way to think about that,

play06:21

is this head is going to be polar and the tail is going to be nonpolar. So what does

play06:26

that mean? All of the heads will line up next to each other. All the polar parts of the

play06:32

phospholipids will line up. And so the surface of a cell membrane is going to have a charge.

play06:36

And then on the inside there's going to be no charge. And all the tails will face the

play06:40

inside. Well, things like water, which is polar, is going to be on the outside of the

play06:47

cell and on the inside of a cell. And it's going to be attracted to that membrane. But

play06:52

it's not going to be able to move through the middle. And the reason why is that there's

play06:55

no charge. Or it's nonpolar on the inside. So as a result of phospholipids, we get certain

play07:02

things that can easily come across. And certain things that can't. And so let me talk about

play07:06

two things that can easily come across. If it's really really small, as a particle then

play07:11

you can sometimes just scoot across. And if you have no charge you can move across as

play07:16

well. You can move through this kind of no zone, no fly zone here. And so an example

play07:21

would be carbon dioxide and oxygen. So carbon dioxide and oxygen can freely move back and

play07:27

forth and the reason why is that they have no charge and they're also really small. And

play07:32

so example, when you breathe in, oxygen, how does that oxygen eventually get into the cell

play07:38

itself where we need it for cellular respiration? Well it's just going to move through diffusion.

play07:42

And it can move easily across that membrane because it's very small and it has no charge.

play07:47

Likewise, when I breathe out, I breathe out carbon dioxide. How does that move? Well it

play07:51

moves easily across because there's no charge. And so if it were just phospholipids that

play07:57

made up membranes then we'd be out of luck. Because we couldn't move things that are large

play08:01

or things that have any amount of charge. And that's where proteins come in. Proteins,

play08:06

there's a number of different proteins. This would be a channel protein. And so it goes

play08:09

all the way across. We'll sometimes have like peripheral proteins. So proteins come in a

play08:14

bunch of different shapes and sizes. But what they essentially do is allow big things and

play08:18

things that have a charge to move across. And so this process I'll talk about in the

play08:22

next podcast is called Facilitated Diffusion. But what you can do with a protein is you

play08:26

can actually move molecules across. So right here we're moving glucose it looks like across,

play08:30

or a sugar. And here we're moving some particles through facilitated diffusion. So these are

play08:35

things that maybe are too large or have a charge and couldn't move through this no fly

play08:39

zone. One thing we used to think about was H2O and how does water move across the membrane?

play08:46

Well it's small but it has a charge. It's polar. So it can't really move across this

play08:50

middle. And so what scientists discovered was something called an aquaporin or a protein

play08:54

that allows water to move through. And it actually can control the amount of water that

play08:59

moves through. So actually water is moving through a tight little bind in this aquaporin.

play09:05

And then we can also use proteins to actually do active transport. So this is the famous

play09:09

sodium-potassium pump. And what it's doing is it's cashing in ATP to move sodium to the

play09:13

outside and then potassium to the inside of a cell. And so proteins are important because

play09:18

they allow big things and things with charge to actually make it across the membrane. So

play09:23

those are cell membranes. But other organisms are actually going to have one other layer

play09:27

outside of that. And that's called the cell wall. Now the cell wall gives them additional

play09:34

selection of what gets in and what doesn't. And it also gives them rigidity. So for example

play09:39

in a plant, the plant is going to have a membrane, that's this yellow portion. But it's going

play09:43

to also have a cell wall around the outside. If we actually look at what that cell wall

play09:48

is made up of, most of the durable part of the cell wall is actually cellulose. And that's

play09:53

why it's hard to eat a tree for example. But what that cell wall gives them is structural

play09:58

integrity. And so water, as water flows into a plant, if it was a human cell, it would

play10:05

actually explode or lyse the cell. But as a result of this cell wall it can actually

play10:09

hold that water in. Bacteria have a cell wall as well. And so bacteria have a cell membrane

play10:17

on the inside but they have a cell wall outside of that. And some of them will have a capsule

play10:21

on the outside of that. But this cell wall gives them protection as well. It's also what

play10:27

we usually attack when we formulate antibiotics. It's what's actually killing the bacteria.

play10:33

Now their cell wall is made up of a different chemical. It's not cellulose, but it serves

play10:37

the same purpose. It's something called peptidoglycan that mostly makes up the durability. And then

play10:42

this is a fungal cell. So a fungus will have a, fungi have a cell wall as well. But it's

play10:48

actually made up of another chemical called chitin. And so cell wall just adds to the

play10:52

protection that some cells have. But again, animal cells don't have that. And so that's

play10:58

cell membranes, that's cell walls, selective permeability and I hope that's helpful.

Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
Cell BiologyDNA ExtractionFluid MosaicPhospholipidsProteinsSelective PermeabilityCell WallScience DemoBiology LessonEducational Video
¿Necesitas un resumen en inglés?