TRANSFORMASI FUNGSI TRANSLASI

Media Matematika
30 Oct 202406:32

Summary

TLDRThe video explains how to translate mathematical equations and functions. It demonstrates shifting a linear equation, 2x - 3y = 4, one unit right and four units down, resulting in the new equation 2x - 3y = 18. The process involves substituting translated variables and simplifying the equation. Similarly, it shows translating a quadratic function, f(x) = x² - 4x + 3, two units left and five units up to obtain f'(x) = x² + 4. The tutorial emphasizes using substitution and careful simplification to derive the 'shadow' equation or function, illustrating translation techniques for both lines and parabolas in a clear, step-by-step approach.

Takeaways

  • 📏 The equation of a line, such as 2x - 3y = 4, can be translated horizontally and vertically to produce a new 'shadow' line.
  • ➡️ A horizontal shift of 1 unit to the right and a vertical shift of 4 units down transforms the original line to the shadow line 2x - 3y = 18.
  • 🟦 Points on the original line (x, y) correspond to points on the shadow line (x', y') through a translation matrix.
  • 🔄 The translation matrix allows calculation of new coordinates: x' = x + horizontal shift, y' = y + vertical shift.
  • ✏️ To find the shadow line equation, replace original variables x and y with the translated variables x' and y' in the original equation.
  • 🧮 After substitution, simplify the equation to get the final shadow line in standard form.
  • 📐 The same method applies to functions like parabolas, e.g., f(x) = x² - 4x + 3, which remain the same shape but change position.
  • ↔️ Horizontal and vertical shifts for functions are represented by adding or subtracting constants in the translation matrix (e.g., -2 units left, +5 units up).
  • -
  • 🔹 To derive the translated function, substitute x = x' + horizontal shift and y = y' - vertical shift into the original function.
  • 🟢 Simplifying the resulting expression after substitution yields the shadow function in standard form, e.g., f'(x) = x² + 4.

Q & A

  • What is the original equation of the line discussed in the video?

    -The original equation of the line is 2x - 3y = 4.

  • How is a line translated horizontally and vertically according to the video?

    -A line is translated by adding or subtracting values to x and y coordinates using a translation matrix: x' = x + h for horizontal shift and y' = y + k for vertical shift, where h and k are the shifts.

  • What are the translation values used for the line in the example?

    -The line is translated 1 unit to the right and 4 units down.

  • How do you express the original variables in terms of the translated variables?

    -You solve the translation equations for the original variables: x = x' - h and y = y' - k. In the example, x = x' - 1 and y = y' + 4.

  • What is the equation of the translated (shadow) line after applying the translation?

    -The shadow line equation after translation is 2x - 3y = 18.

  • What is the original function of the parabola discussed in the video?

    -The original function of the parabola is f(x) = x² - 4x + 3.

  • What translation is applied to the parabola in the example?

    -The parabola is translated 2 units to the left and 5 units up.

  • How do you calculate the shadow function for a translated parabola?

    -Express the original variables in terms of the translated variables (x = x' + h, y = y' - k) and substitute these into the original function, then simplify to get the shadow function.

  • What is the resulting shadow function of the translated parabola?

    -The shadow function of the translated parabola is f'(x) = x² + 4.

  • Why is it necessary to substitute the translated variables back into the original equation or function?

    -Substituting the translated variables ensures that the new equation or function correctly represents the shifted line or curve, maintaining the correct relationship between x' and y'.

  • Can the method used for translating a line also be applied to other types of functions?

    -Yes, the method of using a translation matrix and substituting variables can be applied to any function or curve to calculate its translated (shadow) form.

  • What is the general formula for translating a point (x, y) by a vector (h, k)?

    -The general formula is x' = x + h and y' = y + k, where (h, k) are the horizontal and vertical translation distances.

Outlines

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Mindmap

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Keywords

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Highlights

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Transcripts

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora
Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
Translation MathEquationsMatricesLine TransformationParabola ShiftMath TutorialAlgebraGeometryLinear FunctionsParabolic EquationsCoordinate Shifting
¿Necesitas un resumen en inglés?