Similar Triangles - GCSE Maths

1st Class Maths
21 Jan 202415:42

Summary

TLDREste video educativo explora el concepto de triángulos similares, presentando dos tipos de problemas: triángulos conectados y triángulos superpuestos. Se explica cómo determinar la relación de escala constante entre los lados correspondientes de los triángulos y cómo usar la similitud para resolver problemas. Se destacan técnicas como la división de lados en el mismo triángulo y la utilización de fracciones equivalentes. Además, se abordan problemas prácticos con triángulos conectados y superpuestos, y se muestra cómo aplicar la similitud y las proporciones para encontrar longitudes desconocidas en triángulos.

Takeaways

  • 🔍 El vídeo trata sobre triángulos similares y cómo resolver problemas donde los triángulos están conectados o se superponen.
  • 🔄 Para que dos triángulos sean similares, deben tener una relación de escalado constante entre sus lados correspondientes.
  • 📏 El factor de escala se puede encontrar dividiendo los lados correspondientes de los triángulos, y siempre dará el mismo valor.
  • ↔️ El factor de escala también se puede encontrar al dividir los lados dentro del mismo triángulo, siempre que se dividan de manera consistente.
  • 🔼 Al resolver problemas con triángulos similares, se pueden utilizar ángulos verticalmente opuestos y ángulos alternos para demostrar la similitud.
  • 📐 La similitud de triángulos se puede demostrar al superponer triángulos y comparar los ángulos correspondientes.
  • 🔢 Para encontrar valores desconocidos en triángulos similares, se establecen fracciones de lados correspondientes y se resuelven ecuaciones.
  • 📏 En problemas donde los triángulos se superponen, se identifican las longitudes de los lados correspondientes y se resuelven ecuaciones para encontrar longitudes desconocidas.
  • 💡 Es importante ser consistente al establecer fracciones al inicio de un problema, ya que afecta la resolución de la ecuación.
  • 📋 En problemas con ratios dados, se pueden asignar longitudes ficticias a los lados en proporción para facilitar el cálculo de longitudes desconocidas.

Q & A

  • ¿Qué son los triángulos similares y cómo se definen?

    -Los triángulos similares son dos triángulos que tienen las mismas proporciones y las mismas formas, pero no necesariamente el mismo tamaño. Se definen por tener un factor de escala constante para la ampliación o reducción de uno a otro, y por tener todos sus ángulos correspondientes iguales.

  • ¿Cómo se determina si dos triángulos son similares?

    -Para determinar si dos triángulos son similares, se verifica que sus ángulos correspondientes sean iguales y que la proporción de sus lados correspondientes sea constante. Esto se puede hacer dividiendo los lados correspondientes de uno de los triángulos por los lados correspondientes del otro triángulo y ver si el resultado es el mismo para todos los pares de lados.

  • ¿Qué es el factor de escala de amplificación y cómo se calcula?

    -El factor de escala de amplificación es el número por el cual se multiplica el lado de un triángulo para obtener el lado correspondiente en el otro triángulo similar. Se calcula dividiendo un lado del triángulo más grande por el lado correspondiente del triángulo más pequeño.

  • Si dos triángulos son similares, ¿qué relación tienen sus lados?

    -Si dos triángulos son similares, los lados correspondientes están en la misma proporción, lo que significa que si se toma cualquier par de lados en uno de los triángulos y se divide el lado más grande entre el lado más pequeño, el resultado será el mismo que para cualquier otro par de lados en los triángulos.

  • ¿Cómo se resuelven problemas donde los triángulos están conectados?

    -Para resolver problemas donde los triángulos están conectados, se identifican los lados correspondientes y se establecen las relaciones de proporción utilizando el factor de escala de amplificación. Luego, se resuelven las ecuaciones para encontrar los valores desconocidos, asegurándose de que los factores de escala se apliquen consistentemente.

  • En problemas donde los triángulos se solapan, ¿cómo se demuestra que son similares?

    -En problemas donde los triángulos se solapan, se demuestran similares al mostrar que tienen todos los ángulos correspondientes iguales, ya sea por ser ángulos alternos o por tener lados paralelos que forman ángulos verticales opuestos.

  • ¿Cómo se utilizan las proporciones para encontrar lados desconocidos en triángulos similares?

    -Se establecen fracciones con los lados correspondientes y se resuelven las ecuaciones para encontrar los lados desconocidos. Es importante ser consistente en la selección de lados para las fracciones, ya sea siempre poniendo el triángulo más pequeño en la parte superior o siempre en la parte inferior.

  • ¿Qué sucede si se tiene una relación de longitudes dada en un problema de triángulos similares?

    -Si se tiene una relación de longitudes dada, como 5 a 4, se puede asumir una longitud para cada lado en proporción y luego se utilizan estas longitudes para establecer fracciones y resolver las ecuaciones para encontrar los lados desconocidos.

  • ¿Cómo se abordan los problemas donde los triángulos tienen longitudes totales conocidas y partes desconocidas?

    -Se identifican las longitudes totales y se establecen ecuaciones para las partes desconocidas, utilizando las proporciones de los lados correspondientes de los triángulos similares. Se resuelven estas ecuaciones para encontrar los valores de las longitudes desconocidas.

  • ¿Cómo se pueden usar las fracciones para resolver problemas de triángulos similares?

    -Las fracciones se usan para establecer relaciones de proporción entre los lados correspondientes de los triángulos similares. Se forman fracciones con los lados y se resuelven las ecuaciones resultantes para encontrar los valores desconocidos, asegurándose de que las fracciones sean consistentes en su estructura.

Outlines

00:00

📐 Introducción a los Triángulos Similares

Este primer párrafo introduce el concepto de triángulos similares, explicando que para que dos triángulos sean similares, deben existir una relación constante de escalado entre sus lados correspondientes. Se ilustra con un ejemplo de dos triángulos donde la relación de similitud se demuestra al multiplicar los lados de uno por dos para obtener los lados del otro. Además, se mencionan otras observaciones, como el cálculo del factor de escala y la consistencia en los fracciones equivalentes que se pueden obtener al dividir los lados dentro de los mismos triángulos o entre triángulos similares.

05:01

🔍 Triángulos Similares y Puntos en Paralelo

Este segmento se enfoca en problemas donde los triángulos están conectados a través de líneas paralelas. Se destaca la importancia de los ángulos verticalmente opuestos y los ángulos alternos, que son iguales cuando las líneas están paralelas. Se resuelve un ejemplo donde se encuentran los valores perdidos de los lados de los triángulos, utilizando tanto la multiplicación directa como la resolución de fracciones para encontrar las soluciones. Se enfatiza la consistencia en la forma de establecer las fracciones al inicio del problema.

10:02

🧩 Solución de Problemas con Triángulos Overlapped

En este apartado, se aborda cómo resolver problemas donde los triángulos se solapan. Se demuestra la similitud de los triángulos a través de la comparación de sus ángulos correspondientes. Se presenta un ejemplo donde se identifican los lados correspondientes y se resuelven los valores perdidos de los lados X e Y utilizando la técnica de las fracciones y la consistencia en la elección de los pares de lados. Se resalta la importancia de la consistencia en la selección de lados para establecer las fracciones y se resuelven los valores de X e Y.

15:03

🔢 Utilizando Proporciones en Triángulos Similares

Finalmente, se presenta un desafío más complejo que involucra proporciones en triángulos similares. Se describe un escenario donde se conoce la proporción de lados de un triángulo y se debe encontrar la longitud de uno de sus lados. Se utiliza una estrategia de resolución donde se asume una longitud para los lados en proporción y se resuelve el problema como se habría hecho con longitudes reales. Se resalta la utilidad de esta técnica para resolver problemas en exámenes, y se resuelve un ejemplo específico donde se encuentra la longitud de un lado desconocido.

📚 Conclusión y Recomendaciones para Práctica

El último párrafo ofrece una conclusión del video y recomienda al espectador explorar más videos relacionados, suscribirse para no perderse futuros contenidos y practicar con preguntas de exámenes en el tema. Se invita a los espectadores a intentar resolver problemas similares para fortalecer su comprensión y habilidad en el uso de triángulos similares.

Mindmap

Keywords

💡Triángulos similares

Los triángulos similares son aquellos que tienen las mismas formas pero pueden tener diferentes tamaños. En el vídeo, se discute cómo dos triángulos pueden ser similares si existe una constante de escalado entre ellos, lo que significa que sus lados corresponden en una relación de proporcion constante. Esto es fundamental para entender cómo se relacionan las medidas de los triángulos en los problemas presentados en el vídeo.

💡Escala de ampliación

La escala de ampliación es el factor por el cual se multiplica el tamaño de un triángulo para obtener el tamaño del otro. En el guion, se menciona que si los lados de dos triángulos similares son 12 y 24, respectivamente, la escala de ampliación es 2, ya que 12 se convierte en 24 al multiplicar por 2. Esta noción es crucial para resolver problemas donde se requiere encontrar la medida de un lado desconocido en un triángulo similar.

💡Lados correspondientes

Los lados correspondientes en dos triángulos similares son los que se alinean vertical u horizontalmente y tienen la misma relación de proporción. El guion utiliza este concepto para demostrar cómo se pueden encontrar las proporciones entre los lados de los triángulos, lo cual es esencial para resolver problemas de similaridad.

💡Ángulos verticalmente opuestos

En el vídeo se menciona que los ángulos verticalmente opuestos son iguales, lo que es una propiedad geométrica que se utiliza para demostrar la similaridad entre triángulos. Esto se aplica en problemas donde los triángulos están conectados o superpuestos, y es fundamental para establecer la relación de similaridad entre ellos.

💡Ángulos alternos

Los ángulos alternos son aquellos que se forman cuando una línea paralela intersecta dos líneas secundarias. En el guion, se utiliza la propiedad de que los ángulos alternos son iguales para demostrar la similaridad entre triángulos que están conectados por líneas paralelas. Esta es una técnica común en la geometría para probar la similaridad.

💡Fracciones equivalentes

Las fracciones equivalentes son aquellas que, aunque diferentes en su numeración, representan la misma cantidad. En el contexto del vídeo, se menciona que hay muchas fracciones equivalentes que se pueden escribir usando triángulos similares, lo que ayuda a resolver problemas más complicados.

💡Relación de proporcion

La relación de proporcion es la relación numérica entre dos cantidades. En el guion, se utiliza la relación de proporcion para resolver problemas donde se conoce la relación entre lados de triángulos similares, como en el caso donde la relación entre dos lados es 5:4. Esto es esencial para encontrar la medida de un lado desconocido.

💡Problemas de triángulos conectados

Los problemas de triángulos conectados son aquellos en los que dos triángulos están unidos a lo largo de uno o más lados. El guion describe cómo se pueden usar las propiedades de los triángulos similares para resolver problemas donde se conocen algunas medidas y se busca encontrar otras.

💡Problemas de triángulos superpuestos

Los problemas de triángulos superpuestos son aquellos en los que dos triángulos comparten parte de su área. El vídeo aborda cómo se pueden usar las propiedades de los triángulos similares para resolver problemas donde se conocen algunas medidas y se busca encontrar otras, incluso cuando los triángulos están superpuestos.

💡Ecuaciones de dos pasos

Las ecuaciones de dos pasos son aquellas que requieren dos operaciones para resolverlas, como la eliminación de términos o la simplificación de fracciones. En el guion, se utilizan ecuaciones de dos pasos para encontrar la medida de lados desconocidos en triángulos similares, lo que es un método común en la resolución de problemas geométricos.

Highlights

Exploración de triángulos similares y dos tipos de problemas: triángulos conectados y triángulos superpuestos.

Definición de triángulos similares basada en una constante de escala constante entre ellos.

Demostración de similitud triangular mediante la multiplicación de longitudes de lado correspondientes.

Observaciones sobre cómo encontrar la constante de escala a través de la división de pares de lados correspondientes.

Ejemplo práctico de cómo dividir lados dentro del mismo triángulo para encontrar la constante de escala.

Importancia de las fracciones equivalentes en los triángulos similares para resolver problemas más complejos.

Análisis de triángulos conectados con líneas paralelas y cómo esto afecta la similitud.

Uso de ángulos verticalmente opuestos y ángulos alternos para demostrar similitud en triángulos conectados.

Técnica para encontrar longitudes desconocidas en triángulos similares conectados mediante la multiplicación y la división.

Enfoque alternativo para resolver problemas de triángulos similares utilizando fracciones y la consistencia en la selección de lados.

Solución de problemas de triángulos superpuestos utilizando la similitud y la correspondencia de ángulos.

Estrategia para manejar longitudes de lados en triángulos superpuestos y cómo encontrar longitudes desconocidas.

Uso de la consistencia en la formación de fracciones al resolver problemas de triángulos similares superpuestos.

Resolución de problemas con triángulos similares y ratios dados, utilizando la técnica de asumir longitudes para los ratios.

Ejemplo de cómo asumir longitudes para ratios ayuda a encontrar la longitud de un lado desconocido en un triángulo.

Conclusión del video con una revisión de los conceptos y la recomendación de intentar problemas de exámenes relacionados.

Transcripts

play00:00

[Music]

play00:11

in this video we're going to look at

play00:12

similar triangles we're going to look at

play00:14

two types of problem one's where the

play00:16

triangles are connected like this one

play00:17

and ones where they overlap like this

play00:19

one here before we do this we're going

play00:21

to take a closer look at what it means

play00:22

for two triangles to be similar take

play00:24

these two triangles here if these two

play00:27

triangles are similar there must be a

play00:28

constant scale for out of enlargement

play00:30

from one to the other so if we match up

play00:32

the corresponding sides on the base here

play00:34

we have 12 and 24 on the left we have 5

play00:36

and 10 for the height and the hypotenuse

play00:38

of these are 13 and 26 to get from 12 to

play00:42

24 we'd multiply by two this is the same

play00:45

as going from 5 to 10 on the height and

play00:47

also for the hypotenuse from 13 to 26

play00:50

since this is always the same number

play00:52

these shapes must be similar it works in

play00:54

the other direction as well so if we go

play00:56

from 24 to 12 we would multiply by 1/2

play00:59

and and this is the same for the other

play01:00

sides as well so we know these two

play01:02

shapes are similar there are some other

play01:04

observations we can make we can find

play01:07

that scale factor of enlargement by

play01:08

dividing the pairs of corresponding

play01:10

sides so if we take the purple sides 24

play01:12

and 12 and divide them you'll see we get

play01:15

two this works for the other pairs of

play01:17

sides as well so 10id 5 that's also 2

play01:21

and 26id 13 that's once again two but it

play01:25

also works the other way around so if we

play01:27

take those fractions and do the

play01:29

reciprocal like

play01:31

this then these will always give you the

play01:33

same value as well which this time is

play01:36

1/2 in these fractions here we divided

play01:38

one side from one of the triangles by

play01:40

the corresponding side on the other

play01:41

triangle but we can actually just divide

play01:43

sides within the same triangle as well

play01:45

so if we take the green side in the

play01:47

small triangle and divide it by the

play01:48

purple side we get 5 over2 and then if

play01:51

we do the same thing in the larger

play01:52

triangle the green side divid by the

play01:54

purple side that's 10id 24 these two

play01:58

fractions actually give the same value

play02:00

and it will be the same for any of the

play02:02

pairs of sides as long as you're

play02:03

consistent in what you do for instance

play02:05

if I take the blue side and divide it by

play02:07

the green side and then do the same on

play02:09

the second triangle blue divide by Green

play02:11

I get the same number once again these

play02:13

two fractions give the same value or I

play02:15

could have done the purple side divide

play02:16

by the blue side so we get 12 over 13 on

play02:19

this one and on the other one 24/ by 26

play02:22

and these also give the same value and

play02:24

so do their reciprocals so if we take

play02:26

all of these fractions and take the

play02:28

reciprocal of them those will also be

play02:29

vehicle as well so there's actually lots

play02:32

and lots of equivalent fractions that

play02:33

you can write down using similar

play02:35

triangles this is going to be helpful in

play02:37

solving some of the more complicated

play02:38

questions in this

play02:39

video now let's go back to the original

play02:42

type of question the first one we said

play02:43

was when we have two triangles that are

play02:45

connected and notice we have a parallel

play02:46

line at the top and at the bottom the

play02:49

first thing to notice here is that this

play02:50

angle here is the same as the one below

play02:52

it because these are vertically opposite

play02:54

angles then if we draw in this angle

play02:56

here and draw on some lines like this we

play03:00

find that the green angle is the same as

play03:01

the green angle down here and we call

play03:03

these alternate angles you can see we've

play03:05

got a zed shape there the same idea

play03:07

works for this angle as well so if we

play03:09

draw in a zed shape here this time we

play03:11

find that this blue angle is the same as

play03:13

the blue angle at the bottom down here

play03:14

once again due to alternate angles in

play03:17

the previous video on similar shapes we

play03:19

learned that when the angles are all the

play03:20

same the shapes must be similar it's

play03:22

even more obvious if I move this

play03:24

triangle down to the bottom here and

play03:25

flip it round you can see the blue

play03:27

angles on the left are the same so are

play03:29

the red ones at the top and the green

play03:30

ones on the right but I'd also need to

play03:32

move down these sides like this notice

play03:35

how the sides have moved to a different

play03:36

position this time if I put the original

play03:38

diagram back you can see the eight was

play03:40

on the right hand side but now it's on

play03:41

the left hand side the 10 was on the

play03:43

left and now it's on the right and the

play03:45

13 was on the top and now it's on the

play03:47

bottom so let's go ahead and try and

play03:49

find these missing values now that we've

play03:50

put this information on so to get from

play03:52

10 to 20 we multiply by two so we must

play03:56

multiply the 13 by two on the bottom to

play03:57

get to Y and 13 * 2 is

play04:00

26 then of course we must multiply the 8

play04:03

by two to get to the x value and 8 * 2

play04:05

is

play04:06

16 now this uses the technique that we

play04:09

did in the previous video on similar

play04:10

shapes but I'm also going to show you

play04:12

this by using fractions you don't need

play04:14

to use this approach to solve these ones

play04:16

but it's going to help us to practice it

play04:17

especially for the questions later in

play04:19

this video so what we're going to do is

play04:21

pair up the corresponding sides so on

play04:23

the left here we have X and 8 and on the

play04:25

right we have 20 and 10 we're going to

play04:27

use these pairs of sides to find the

play04:29

value of X so if we divide the green

play04:31

ones by doing xide by 8 this must be the

play04:34

same as when we divide the blue ones so

play04:36

20 over 10 so we form an equation like

play04:39

this we can solve this equation by

play04:41

multiplying both sides by eight if you

play04:44

multiply the left side by 8 the 8 will

play04:46

cancel and then you multiply the right

play04:47

side by 8 we get this 20 * 8 on the top

play04:51

there is 160 so we have 160 over 10

play04:54

which was 16 and we knew that was the

play04:56

answer to the question because we worked

play04:57

it out before so so X is 16 and let's do

play05:01

a similar idea to work out y so y pairs

play05:04

up with the 13 on the bottom here so if

play05:06

we divide the purple Sid we get y over

play05:09

13 and this must be equal to any of the

play05:11

other pairs divided I'm going to go for

play05:13

the blue pair again so 20 over

play05:15

10 here we just multiply both sides by

play05:18

13 and we get 20 lots of 13 over 10 20 *

play05:22

13 is 260 and divide this by 10 and you

play05:25

get

play05:26

26 which again we knew this was the

play05:28

answer from before

play05:31

now let's take a look at how a question

play05:32

like this could be worded so if we take

play05:34

some triangles like this and we're told

play05:36

to work out the values of X and Y notice

play05:39

they haven't even told us that these two

play05:40

triangles are similar they don't need to

play05:42

because they've marked on the parallel

play05:43

lines so we should already know that

play05:45

information so let's try with X first

play05:48

you can see that X matches up with a 15

play05:49

on the bottom then if we remember that

play05:52

if we flip that triangle from the top

play05:53

upside down the8 is actually going to

play05:55

match up with a 12 so even though the

play05:57

eight is on the right it matches up with

play05:58

the 12 on the left left and the four

play06:01

matches up with the Y so let's divide

play06:04

the purple sides so x / 15 and this is

play06:07

going to be equal to one of the other

play06:09

pairs divided now since we don't know

play06:11

why I'm going to avoid the blue pair and

play06:12

go for the green one so the green one

play06:14

would be eight IDE by 12 then we can

play06:17

just solve this like we did for the

play06:19

previous two we just multiply both sides

play06:21

by 15 so on the left we get X and on the

play06:23

right we get 8 over2 multiplied 15 which

play06:26

we could combine to one fraction like

play06:28

this 8 * 15 is 120 so we get x = 120 /

play06:33

12 and 120 / 12 is just 10 so we found

play06:37

the value of x it's 10 one thing that's

play06:40

really important is you need to be

play06:41

consistent in the way you set up the

play06:42

fractions at the start of this question

play06:44

the X here was from the smaller triangle

play06:47

the eight was also from the smaller

play06:48

triangle the 15 was from the larger

play06:51

triangle and so was the 12 it's

play06:54

important that you're consistent in

play06:55

having the small on the top and the

play06:56

large on the bottom or of course you

play06:58

could have the large on the top and the

play07:00

small on the bottom it doesn't matter

play07:01

which way around you do it as long as

play07:02

you're consistent I put the small on the

play07:05

top here because we were trying to find

play07:07

X so let's replace the X with a 10 and

play07:10

let's go and find y so this time we're

play07:13

going to divide the blue pair so y over

play07:15

4 and this is going to be equal to one

play07:17

of the other pairs I'm going to go for

play07:18

the green one once again but this time

play07:20

it will be 12 over 8 notice y was on the

play07:23

larger triangle so 12 must also be on

play07:25

the larger triangle and on the bottom

play07:27

we've got four and eight which are from

play07:29

the smaller triangle to solve this then

play07:31

we just multiply both sides by four on

play07:33

the left we'd have y and on the right 12

play07:35

8 multiplied by 4 we can combine that to

play07:38

one fraction so it's 12 * 4 over 8 12

play07:42

fours are just 48 so it's 48 over 8 and

play07:46

48 / by 8 is 6 so the value of y is

play07:50

6 now let's have a look at the other

play07:52

type of problem so a question that looks

play07:54

like this this time the triangles are

play07:56

both there but they're overlapping each

play07:58

other we we can show that they're

play07:59

similar Again by looking at their angles

play08:01

so if we draw in these lines here then

play08:04

this green angle on the left must be the

play08:06

same as this green angle up here this is

play08:09

because they're corresponding angles the

play08:11

same idea works on the right side so if

play08:13

we draw in this line and then these two

play08:16

this angle here that's blue must be the

play08:17

same as this one here that's blue once

play08:19

again because they're corresponding

play08:21

angles and then finally we have the

play08:23

angle at the top here well that's

play08:24

actually the same angle for both of the

play08:26

triangles so if I separate them off like

play08:28

this we've got the small triangle and

play08:30

then the large triangle you can see all

play08:32

of the angles match again so they must

play08:34

be similar shapes but this one can be a

play08:36

bit more tricky to do on the top

play08:38

triangle I actually have lengths for all

play08:40

of the sides so I've got the 15 on the

play08:42

bottom the 18 on the left and the 12 on

play08:44

the right on the larger triangle though

play08:46

it's a bit more difficult I can see I

play08:48

have 25 on the base so I can mark that

play08:50

on but the left and right side can be

play08:52

tricky so for the left side here it's

play08:54

the whole length from here to here so we

play08:57

have a y and an 18 so the total length

play09:00

must be y + 18 it's similar on the right

play09:03

hand side so we need to go all the way

play09:04

from here to here which we have X and 12

play09:07

so the total length is x + 12 now that

play09:10

we form these triangles we're ready to

play09:12

find the missing values of X and Y to do

play09:15

this we're going to divide corresponding

play09:16

pairs of sides again so I'm going to

play09:18

start by trying to find X so I can see

play09:20

I've got X on the larger triangle in the

play09:22

x + 12 side so x + 12 and I'm going to

play09:25

divide that by the side that matches on

play09:26

the smaller shape which is 12 so I have

play09:29

x + 12 over 12 then this is going to be

play09:32

equal to a second fraction and I need to

play09:33

pick another pair of sides now I'm not

play09:35

going to pick the sides on the left

play09:37

because they have a y in them if I pick

play09:38

the base of the triangle then I can see

play09:40

I have both of those sides I've got 15

play09:42

and 25 I need to be consistent and since

play09:45

I started with the larger triangle on

play09:46

the last fraction I'll do the same here

play09:48

so it's 25 on the top and 15 on the

play09:50

bottom now we can go ahead and solve

play09:52

this so for this one we would multiply

play09:54

both sides by 12 that would give us x +

play09:56

12 on the left and on the right we'd

play09:58

have 25 multiplied by 12 all over 15 we

play10:02

could also multiply both sides by 15 now

play10:04

so if we multiply the left side by 15 we

play10:06

need to use a bracket so we'd have 15

play10:08

lots of x + 12 and on the right hand

play10:10

side the 15s will no cancel so it's just

play10:12

25 * 12 on the left I would now expand

play10:15

out this bracket so 15 lots of X is 15 x

play10:18

and 15 lots of 12 is 180 on the right

play10:21

side I need to do 25 multip by 12 which

play10:23

is 300 this is now just a nice two-step

play10:26

equation to solve we can subtract 180

play10:28

from both sides so we get 15x = 120 and

play10:31

then divide both sides by 15 we get x =

play10:34

8 so we found the value of x it's 8

play10:37

cm now let's do the same idea and work

play10:40

out why so we'll start with the y + 18

play10:43

and divide it by the side that matches

play10:44

on the other triangle which is

play10:46

18 and this will be equal to another

play10:48

fraction and it makes sense to choose

play10:50

the sides 25 and 15 again so 25 over 15

play10:54

you can see I've been consistent again

play10:55

and I have the larger triangle on the

play10:57

top and the smaller triangle on the

play10:58

bottom of those fractions we'll solve

play11:01

this in the same sort of way so we'll

play11:02

multiply both sides by 18 on the left

play11:05

this will give us y + 18 and on the

play11:07

right 25 * by 18 all over

play11:10

15 then multiply both sides by 15 so we

play11:13

get 15 lots of y + 18 and on the right

play11:16

the 15 cancel so it's just 25 * 18 if we

play11:20

expand out the brackets here we get 15

play11:21

lots of y That's Just 15 Y and 15 * 18

play11:25

is

play11:26

270 on the right 25 lots of 18 is 450

play11:31

once again we just have a two-step

play11:32

equation to solve if you subtract 270

play11:34

from both sides we get 15 y = 180 and

play11:38

then divide both sides by 15 and we'll

play11:41

get y = 12 now let's try a second

play11:43

example of this this a little bit more

play11:45

difficult so this time we've got this

play11:46

diagram and we're just trying to find X

play11:49

so if we separate these off into two

play11:51

triangles we have a small triangle that

play11:52

looks like this and we can see the side

play11:54

on the left there at the top is X and on

play11:57

the right we have a nine then if we do

play11:59

the big triangle here the side on the

play12:01

top left is actually all the way from

play12:03

here to here so we need to do x + 5 and

play12:06

on the right this time is

play12:08

12 now that we have these two triangles

play12:10

we can go ahead and find X so we need to

play12:12

divide the sides that match so I'm going

play12:14

to divide x + 5 on the big triangle by X

play12:17

on the small

play12:18

triangle and this will equal another

play12:20

fraction and since I started with the

play12:22

larger one I'll do 12 over 9 this one's

play12:25

a little bit different in its structure

play12:27

but we use the same idea to solve it

play12:29

let's multiply both sides by X this time

play12:31

on the left this will cancel the X on

play12:33

the bottom so I get x + 5 and on the

play12:35

right I'll get 12 lots of X over

play12:38

9 then we multiply both sides by 9 on

play12:42

the left hand side this will give us 9

play12:43

lots of x + 5 and on the right the N9

play12:45

will cancel so we just have 12 lots of X

play12:49

expanding the bracket on the left gives

play12:50

us 9x + 45 and on the right 12 lots of X

play12:54

is just 12 x to solve this equation we'

play12:57

subtract 9x from both sides

play12:59

if you subtract it from the left it will

play13:00

cancel so we've just got 45 and if you

play13:03

subtract 9x from 12x you get

play13:05

3x then finally divide both sides by

play13:07

three and you find that X is equal to 15

play13:10

now I want to look at one more of these

play13:12

questions but there's going to be some

play13:13

ratio involved so if we take this

play13:15

diagram here and notice we actually have

play13:17

labels for the sides this time this is

play13:18

quite common in exams especially for Ed

play13:20

Exel and this time they're going to tell

play13:22

us that the ratio of a d to be is 5 to 4

play13:26

and we're going to be tasked with

play13:27

finding the length of De

play13:29

now at first glance it looks like we

play13:31

don't have very much information on this

play13:32

diagram we only have the 15 cm so it

play13:35

might feel like we don't have enough to

play13:36

answer the question but we do we're

play13:38

going to start with this ratio here A D

play13:41

to be being at 5: 4 now the easiest way

play13:44

to think about this is just to pretend

play13:46

that a d is 5 cm and that be is 4 cm

play13:50

even if it doesn't look like they're

play13:51

that long in the diagram it's still

play13:53

going to work for the question so I'm

play13:55

going to label be as four and AD as five

play13:58

from here we just proceed with the

play14:00

question as normal it's important that

play14:02

you understand that those aren't

play14:03

actually that length it's just their

play14:05

ratio but for this question it will help

play14:07

us solve the problem finally since we're

play14:09

trying to find de I'm going to label

play14:11

that as X so what we'll do now is

play14:13

separate them off into the two triangles

play14:14

so we have the small triangle that looks

play14:16

like this that's triangle EBC and for

play14:18

this triangle we know some of its

play14:19

lengths from E to C is 15 and E to B is

play14:22

four or at least we're pretending it's

play14:24

four and for the large triangle which is

play14:26

triangle da we know the height on the

play14:28

left from a to d is 5 or at least we're

play14:30

pretending it's five and we also know

play14:32

the length all the way along the

play14:33

diagonal there is x + 15 now we just go

play14:37

ahead and set up some fractions again so

play14:38

I'm going to start with x + 15 and

play14:41

divide it by the same side on the other

play14:42

triangle which is 15 then I have my

play14:45

second fraction that this is equal to

play14:46

and it will be 5 over

play14:49

4 now we just solve this equation like

play14:51

we have done all of the previous ones

play14:53

multiply both sides by 15 that's x + 15

play14:55

on the left and on the right 5 * 15 all

play14:59

over 4 then multiply both sides by four

play15:02

on the left we've got four lots of x +

play15:04

15 and on the right the four will cancel

play15:07

so 5 lots of

play15:08

15 expand out the bracket on the left

play15:10

we've got 4x + 60 and on the right 5 *

play15:13

15 is

play15:15

75 now solve this two-step equation by

play15:17

subtracting 60 from both sides 4X will

play15:20

be 15 and then finally divide both sides

play15:22

by four and we'll find that X is

play15:27

3.75

play15:29

thank you for watching this video I hope

play15:30

you found it useful check out the one I

play15:32

think you should watch next subscribe so

play15:33

you don't miss out on future videos and

play15:35

go and try the exam questions on this

play15:36

topic that are in this video's

play15:41

description

Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
MatemáticasTriángulos SimilaresGeometríaProblemas de TriángulosEscala de AumentoFracciones EquivalentesÁngeles CorrespondientesTeoría GeométricaEducación MatemáticaTutorial de Geometría