Finding Angles - Trigonometry in Right-angled Triangles - Tutorial / Revision (4/5)

Me vs Maths
10 Apr 201405:00

Summary

TLDRThis tutorial introduces the use of inverse trigonometric functions to find missing angles in right-angled triangles. It guides viewers through labeling sides, identifying active sides, and applying formulas like tan and cos with their inverses to solve for angles. The instructor demonstrates using a calculator to find angles, rounding the results to 41.0 and 72.2 degrees, respectively. The video concludes with an invitation for questions and a comparison of Pythagoras and trigonometry for future lessons.

Takeaways

  • 📚 This tutorial is part of a series on trigonometry, focusing on using inverse trigonometric functions to find missing angles in right-angled triangles.
  • 🔍 The presenter suggests reviewing previous tutorials if one is not familiar with trigonometric formulas, indicating the importance of foundational knowledge.
  • 🧭 The tutorial introduces inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹, and how they are accessed on calculators, which is crucial for solving the problems.
  • 📐 The first step in solving the problem is labeling the sides of the triangle, which helps in identifying the 'active' sides needed for the calculations.
  • 🔢 The tutorial demonstrates using the tangent function (tan) to find an angle when given the lengths of the opposite and adjacent sides.
  • ✅ The use of the inverse tangent function (tan⁻¹) is shown to isolate and find the value of the angle, with an example calculation provided.
  • 📉 The process of substituting values into the trigonometric formula and solving for the angle is explained step by step, emphasizing precision.
  • 📈 Another example is given using the cosine function (cos) to find an angle when given the lengths of the adjacent side and the hypotenuse.
  • 🔄 The inverse cosine function (cos⁻¹) is used similarly to tan⁻¹ to find the angle, with an example calculation shown.
  • 📝 The importance of writing out the formulas in full is highlighted to ensure correct substitution and avoid errors.
  • 🤔 The tutorial ends with an invitation for questions and a reminder of the availability of further resources for understanding trigonometry and its applications.

Q & A

  • What is the main topic of this tutorial?

    -The main topic of this tutorial is using trigonometry to find missing angles in right-angled triangles.

  • What is the series number of this tutorial in the trigonometry series?

    -This is tutorial number 4 in the trigonometry series.

  • What are the inverse trigonometric functions mentioned in the script?

    -The inverse trigonometric functions mentioned are sin^(-1), cos^(-1), and tan^(-1).

  • How can you access the inverse trigonometric functions on a calculator?

    -On a calculator, these functions are usually accessed by pressing shift or sometimes 2nd F and then the sin, cos, or tan buttons.

  • What are the active sides in a triangle when using trigonometric ratios?

    -The active sides are the two sides given in the problem statement, which are used in the trigonometric formula to find the missing angle.

  • What trigonometric ratio uses the opposite and adjacent sides of a right-angled triangle?

    -The tangent ratio (tan) uses the opposite and adjacent sides of a right-angled triangle.

  • How do you find the angle X using the tangent ratio?

    -To find the angle X, you use the inverse tangent function, tan^(-1), on the calculator with the opposite side divided by the adjacent side.

  • What is the result of the first example calculation in the script?

    -The result of the first example calculation is 41.0 degrees for the angle X.

  • What trigonometric ratio uses the adjacent side and the hypotenuse of a right-angled triangle?

    -The cosine ratio (cos) uses the adjacent side and the hypotenuse of a right-angled triangle.

  • How do you find the angle Y using the cosine ratio?

    -To find the angle Y, you use the inverse cosine function, cos^(-1), on the calculator with the adjacent side divided by the hypotenuse.

  • What is the result of the second example calculation in the script?

    -The result of the second example calculation is 72.2 degrees for the angle Y.

  • What is the purpose of the tutorial mentioned at the end of the script?

    -The purpose of the mentioned tutorial is to compare Pythagoras' theorem with trigonometry and to determine when to use each.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
TrigonometryRight TrianglesTutorialInverse FunctionsMathematicsEducationAngle CalculationCalculator TipsSeries 4Learning
Benötigen Sie eine Zusammenfassung auf Englisch?