prove geometrically that cos(x+y) = cosx cosy - sinx siny | 💯 guaranteed question | class : 11

Educational Brainy
7 Feb 202414:19

Summary

TLDRIn this video, the presenter teaches the derivation of the cos(x + y) trigonometric identity, a guaranteed exam question for class 11 students. The process begins with drawing a unit circle, dividing it into four parts, and marking key points. The derivation involves using trigonometric identities, geometric analysis, and properties of congruent triangles to arrive at the final equation: cos(x + y) = cos(x)cos(y) - sin(x)sin(y). The video emphasizes the importance of practicing the steps multiple times for better understanding and retention, with additional resources like a PDF available for further review.

Takeaways

  • 😀 This video focuses on deriving the cos(x + y) identity for Class 11, which is an important and guaranteed exam question.
  • 😀 The first step in the derivation involves drawing a unit circle and dividing it into four equal parts.
  • 😀 Label the X and Y axes and mark four points on the circle: A, B, C, and D.
  • 😀 The coordinates for the points are: A (1, 0), B (cos x, sin x), C (cos(x + y), sin(x + y)), and D (cos y, -sin y).
  • 😀 Draw lines connecting points B and D, as well as B and O, and D and O to form the basic diagram.
  • 😀 Use the angles formed by the points, such as angle AOB = x, angle AOC = x + y, and angle AOD = -y, to establish geometric relationships.
  • 😀 The diagram helps in visualizing the proof, and understanding it is crucial for correctly solving the problem.
  • 😀 The two congruent triangles BOD and AOC are used to prove relationships between the sides and angles of the unit circle.
  • 😀 Apply the distance formula to show that the square of the distances BD and AC are equal, leading to the simplification of terms.
  • 😀 The algebraic steps involve using the expansion of (a - b)^2 and (a + b)^2 formulas to eventually derive the final identity: cos(x + y) = cos x * cos y - sin x * sin y.
  • 😀 Practice is emphasized as the key to mastering this derivation, with encouragement to repeat the process multiple times for full understanding.

Q & A

  • What is the identity being proved in this derivation?

    -The identity being proved is the cosine addition formula: cos(x + y) = cos(x) * cos(y) - sin(x) * sin(y).

  • What is the first step in the derivation process?

    -The first step is to draw a unit circle and divide it into four equal parts.

  • What are the four points marked on the circle?

    -The four points marked on the circle are: A(1, 0), B(cos(x), sin(x)), C(cos(x + y), sin(x + y)), and D(cos(y), -sin(y)).

  • What do the angles AOB, AOC, and AOD represent?

    -The angles are as follows: AOB = x, AOC = x + y, and AOD = -y.

  • What is the purpose of drawing triangles BOD and AOC?

    -The purpose of drawing triangles BOD and AOC is to use triangle congruence to show that the lengths of diagonals BD and AC are equal.

  • How are the lengths of diagonals BD and AC related?

    -The lengths of diagonals BD and AC are shown to be equal by the congruence of triangles BOD and AOC, which implies BD = AC.

  • What is the significance of squaring both diagonals BD and AC?

    -Squaring both diagonals allows us to use the distance formula and apply trigonometric identities to simplify and solve the equation.

  • What trigonometric identity is used to simplify the equation?

    -The Pythagorean identity sin²(θ) + cos²(θ) = 1 is used to simplify both sides of the equation.

  • What is the final result after simplification?

    -After simplification, the final result is cos(x + y) = cos(x) * cos(y) - sin(x) * sin(y).

  • What advice does the speaker give to students learning this derivation?

    -The speaker advises students to practice writing the derivation multiple times to fully understand the steps and make the process easier.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
TrigonometryClass 11MathematicsCos x + yExam TipsMath DerivationUnit CircleAnglesTrigonometric ProofStudy GuideMath Tutorial
Benötigen Sie eine Zusammenfassung auf Englisch?