CARA MENGHITUNG LUAS JURING LINGKARAN #juringlingkaran #lingkaran
Summary
TLDRIn this video, the presenter explains how to calculate the area of a circle's cross-section, using two examples. The first example focuses on calculating the area of a sector with a 72-degree angle and a 20 cm radius, while the second example involves a 45-degree angle and a 28 cm radius. The presenter walks through the process step-by-step, explaining the formulas and calculations involved, including the choice of the constant value for Pi (3.14 or 22/7). The video provides clear and detailed instructions, making it easy for viewers to understand and apply the concept of sector area calculations.
Takeaways
- 😀 The video discusses how to calculate the area of a sector of a circle.
- 😀 The formula to calculate the area of a sector is: (Angle of Sector / 360°) * π * r².
- 😀 The value of π can be either 22/7 or 3.14, depending on the radius or diameter of the circle.
- 😀 22/7 is used when the radius or diameter is a multiple of 7.
- 😀 3.14 is used when the radius or diameter is not a multiple of 7.
- 😀 In the first example, the radius of the circle is 20 cm and the central angle is 72°, leading to an area of 251.2 cm².
- 😀 The division and multiplication steps are demonstrated clearly for both calculating the area and simplifying the formula.
- 😀 The second example uses a 45° angle and a radius of 28 cm, resulting in an area of 154 cm².
- 😀 Simplifying fractions (like 72/360) is important to make the calculations easier.
- 😀 The video encourages viewers to support the channel by liking, subscribing, and pressing the bell button for notifications.
Q & A
What is the main topic discussed in the video?
-The main topic discussed in the video is how to calculate the area of a circle's cross-section (sector), with examples demonstrating the calculation process using specific formulas.
What is the formula to calculate the area of a sector of a circle?
-The formula to calculate the area of a sector is: (angle of the sector / 360) * π * radius².
When do we use 22/7 as the value of π?
-We use 22/7 as the value of π when the radius or diameter is a multiple of 7 (e.g., 7, 14, 21, 28, etc.).
When do we use 3.14 as the value of π?
-We use 3.14 as the value of π when the radius or diameter is not a multiple of 7.
In the first example, how do we calculate the area of the sector with a 72° angle and a radius of 20 cm?
-First, simplify the fraction (72/360) to 1/5. Then, apply the formula: (1/5) * 3.14 * 20 * 20, which gives 251.2 cm².
What is the process of simplifying the fraction (72/360)?
-To simplify (72/360), divide both the numerator and denominator by their greatest common divisor, which is 72. This results in 72/360 being simplified to 1/5.
How do we handle decimal multiplication in the example with the radius of 20 cm?
-To handle decimal multiplication, move the decimal point to eliminate it. For example, multiplying 3.14 by 20 * 20 results in 314, which can then be multiplied and simplified.
In the second example, what is the radius and angle given, and how is the area calculated?
-In the second example, the radius is 28 cm, and the angle is 45°. The area is calculated using the formula: (45/360) * (22/7) * 28 * 28, which results in 154 cm².
What is the importance of simplifying the fraction (45/360) in the second example?
-Simplifying (45/360) to 1/8 makes the calculation easier and more manageable by reducing the fraction before applying it to the formula.
Why is the result in cm² when calculating the area of a sector?
-The result is in cm² because we are calculating an area, and the unit for area is always squared (e.g., cm²).
Outlines

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.
Upgrade durchführenMindmap

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.
Upgrade durchführenKeywords

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.
Upgrade durchführenHighlights

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.
Upgrade durchführenTranscripts

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.
Upgrade durchführenWeitere ähnliche Videos ansehen

Module 4 Topic 5

Cara Menghitung Panjang Busur dan Luas Juring Lingkaran

Matematika SMA - Trigonometri (8) - Trigonometri Luas Segitiga, Rumus Luas Segitiga (A)

Introduction to tensile stress

Kesebangunan Segitiga: Kesebangunan Segitiga Siku-siku (Belajar Matematika Kelas 7) - Kak Hasan

Panjang Busur dan Luas Juring Lingkaran
5.0 / 5 (0 votes)