How to simplify an expression by combining like terms and the distributive property | Khan Academy

Khan Academy
7 Sept 201204:07

Summary

TLDRIn this video, the speaker simplifies algebraic expressions using basic arithmetic principles. They first demonstrate the distributive property by simplifying 2 times (3x + 5) into 6x + 10. Then, they tackle a more complex expression, 7 times (3y - 5) - 2 times (10 + 4y), showing step-by-step distribution and combining like terms to arrive at the simplified result of 13y - 55. The video emphasizes foundational concepts like distribution and combining similar terms to help viewers understand the process of simplification in algebra.

Takeaways

  • 😀 The previous video feedback suggested the use of less overwhelming Chuck Norris imagery, and this video aims for a more soothing approach.
  • 😀 The goal is to simplify expressions, applying previously known ideas in a more accessible way.
  • 😀 Simplifying the expression 2 times (3x + 5) involves distributing the 2 to both terms inside the parentheses.
  • 😀 Distributing 2 to 3x gives 6x, and distributing 2 to 5 gives 10, resulting in the simplified expression 6x + 10.
  • 😀 The distributive property, which applies when multiplying a number outside parentheses to terms inside, is used throughout this process.
  • 😀 A more complex example is given: simplifying 7 times (3y - 5) minus 2 times (10 + 4y).
  • 😀 Distributing 7 to both 3y and -5 results in 21y and -35, respectively, simplifying the left side of the expression.
  • 😀 On the right side, distributing -2 to both 10 and 4y results in -20 and -8y, respectively.
  • 😀 After distributing, we simplify like terms: 21y and -8y combine to give 13y.
  • 😀 Finally, combining -35 and -20 results in -55, giving the fully simplified expression 13y - 55.

Q & A

  • What does the expression 2 times (3x + 5) mean?

    -The expression 2 times (3x + 5) means two 3x + 5's, or in other words, adding 3x + 5 twice.

  • How can we simplify 2 times (3x + 5)?

    -To simplify 2 times (3x + 5), we distribute the 2 to both terms inside the parentheses: 2 times 3x equals 6x, and 2 times 5 equals 10. This results in 6x + 10.

  • Is this simplification an application of the distributive property?

    -Yes, this simplification uses the distributive property, where 2 is distributed to both 3x and 5 in the expression 2 times (3x + 5).

  • What happens when we simplify the expression 7 times (3y - 5)?

    -When simplifying 7 times (3y - 5), we distribute the 7 to both terms inside the parentheses: 7 times 3y equals 21y, and 7 times -5 equals -35. The simplified expression is 21y - 35.

  • How do we handle the expression -2 times (10 + 4y)?

    -We distribute the -2 to both terms inside the parentheses: -2 times 10 equals -20, and -2 times 4y equals -8y. The result is -20 - 8y.

  • What is the significance of the negative sign in -2 times (10 + 4y)?

    -The negative sign means that both 10 and 4y will be multiplied by -2, which results in -20 and -8y, respectively.

  • What is the final simplified form of the expression 7 times (3y - 5) - 2 times (10 + 4y)?

    -The final simplified form of the expression is 13y - 55. This is achieved by combining like terms: 21y - 8y equals 13y, and -35 - 20 equals -55.

  • Why can't we combine the terms 21y and -35 or -20 in the expression 21y - 35 - 20?

    -We cannot combine the terms 21y and -35 or -20 because they represent different types of terms: 21y is a term involving y, while -35 and -20 are constant numbers.

  • How do you combine like terms in the expression 21y - 8y?

    -To combine like terms, simply subtract the coefficients: 21y - 8y equals 13y. Both terms involve the variable y, so they can be combined.

  • Why is the distributive property important in simplifying algebraic expressions?

    -The distributive property is important because it allows us to multiply a number by each term inside parentheses, simplifying the expression step by step and making it easier to work with.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
AlgebraMath TutorialDistributive PropertySimplificationLike TermsMath HelpEducational VideoBeginner MathMath LessonExpression Simplification
Benötigen Sie eine Zusammenfassung auf Englisch?