20201-CTI212 -KALKILUS 2 - 13 (SURYANI) ***

Elearning Universitas Esa Unggul
20 Jan 202111:28

Summary

TLDRIn this lecture, Professor Suryani discusses Taylor and Maclaurin series in Calculus 2. She explains the definitions, formulas, and processes to derive Taylor series for different functions, such as f(x) = x, f(x) = 1 + x, and f(x) = sin(x). Additionally, she introduces Maclaurin series, which are Taylor series centered at x = 0, and provides examples like f(x) = cos(x) and f(x) = e^x. Detailed explanations and step-by-step calculations are given to help students understand and apply these concepts.

Takeaways

  • ๐Ÿ“š The lecture introduces the concept of Taylor and Maclaurin series, which are mathematical tools used to represent functions as an infinite sum of terms calculated from the derivatives of the function at a single point.
  • ๐Ÿ” The Taylor series is defined for a function 'f(x)' that has derivatives of all orders at a point 'a', and it is represented as a sum of terms involving the derivatives of 'f' evaluated at 'a', each term multiplied by a power of '(x-a)' and divided by the factorial of the power.
  • ๐Ÿ“˜ The Maclaurin series is a special case of the Taylor series where the function is expanded around 'x=0', which simplifies the series since all odd powers of 'x' will have a derivative of zero at 'x=0'.
  • ๐Ÿ”ข The script explains the process of finding the Taylor series for a function 'f(x)', starting from finding the first derivative to higher order derivatives, and then substituting these into the Taylor series formula.
  • ๐Ÿ“ The factorial function is highlighted as an essential part of the Taylor series formula, where each term involves the factorial of the power of '(x-a)'.
  • ๐Ÿ“‰ The concept of 'remainder' or 'sisa' in the script refers to the difference between the function and its Taylor series approximation, which includes the higher order terms that are not included in the approximation.
  • ๐Ÿ“Œ Specific examples are given to illustrate the process of finding the Taylor series for functions such as 'f(x) = x' at 'x = 2', 'f(x) = sin(x)' at 'x = ฯ€/2', and 'f(x) = cos(x)'.
  • ๐Ÿ“ The importance of correctly calculating the derivatives and substituting the values of 'a' is emphasized to ensure the accuracy of the Taylor series approximation.
  • ๐Ÿ“ˆ The script also discusses the Maclaurin series for functions like 'f(x) = cos(x)', where all derivatives are calculated at 'x = 0' and the series is simplified due to the properties of the cosine function.
  • ๐Ÿ“š The lecturer encourages students to engage in discussions with their peers if they have any doubts or do not understand certain concepts, promoting collaborative learning.

Q & A

  • What is the main topic discussed in the script?

    -The main topic discussed in the script is Taylor and Maclaurin series, which are mathematical concepts used to approximate functions using their derivatives at a given point.

  • What is the definition of a Taylor series according to the script?

    -The Taylor series is defined as an infinite sum of terms calculated from the derivatives of a function evaluated at a single point, divided by the factorial of the order of the derivative, multiplied by the power of the variable.

  • What is the factorial function mentioned in the script?

    -The factorial function, denoted as '!', is the product of all positive integers up to a given number, e.g., 5! = 5 ร— 4 ร— 3 ร— 2 ร— 1.

  • How is the remainder term in a Taylor series described in the script?

    -The remainder term in a Taylor series is referred to as the 'suku sisa' in the script, which represents the error term or the difference between the function and its Taylor series approximation.

  • What is the difference between a Taylor series and a Maclaurin series as explained in the script?

    -The difference between a Taylor series and a Maclaurin series is that a Maclaurin series is a special case of a Taylor series where the function is expanded around the point x = 0.

  • What is the process for finding the Taylor series of a function according to the script?

    -The process involves finding the derivatives of the function up to the desired order, evaluating them at the point 'a', and then substituting these values into the Taylor series formula.

  • What is the significance of the point 'a' in the Taylor series formula?

    -The point 'a' is the center around which the function is expanded in the Taylor series. It is the value at which the derivatives are evaluated.

  • How does the script describe the calculation of the nth derivative of a function?

    -The script describes the calculation of the nth derivative by repeatedly differentiating the function until the nth order and then simplifying the result.

  • What is the example given in the script for finding the Taylor series of the function f(x) = sin(x) at x = ฯ€/2?

    -The script provides an example of finding the Taylor series of the sine function at ฯ€/2 by calculating its derivatives and substituting the values into the Taylor series formula, taking into account the values of sine and cosine at ฯ€/2.

  • What is the importance of simplifying the factorial terms in the Taylor series calculation as mentioned in the script?

    -Simplifying the factorial terms is important to reduce the complexity of the calculation and to avoid potential errors in the computation process.

Outlines

00:00

๐Ÿ“š Introduction to Taylor and Maclaurin Series

The first paragraph introduces the concept of Taylor and Maclaurin series in calculus. The speaker, identified as Suryani, a lecturer, begins by explaining the definition of Taylor series, which is a representation of a function as an infinite sum of terms calculated from the derivatives of the function at a single point. The paragraph delves into the mathematical formulation of the series, including the factorial and the sigma notation used in the series expansion. The lecturer also provides an example of finding the Taylor series for the function f(x) = x at x = 2, highlighting the process of calculating the necessary derivatives and substituting them into the series formula.

05:00

๐Ÿ” Derivation and Application of Taylor Series

The second paragraph continues the discussion on Taylor series by illustrating the process of deriving and applying the series to different functions. The lecturer explains how to calculate the derivatives of a function and substitute these into the Taylor series formula, taking care to include the factorial terms. An example is given for the function f(x) = sin(x) at x = ฯ€/2, where the derivatives of the sine function are calculated up to the sixth derivative. The importance of simplifying the series by substituting the values of the derivatives at the specified point is emphasized, and the concept of the remainder term in the series is briefly touched upon.

10:04

๐Ÿ“˜ Maclaurin Series and Special Cases

The third paragraph focuses on the Maclaurin series, a special case of the Taylor series where the expansion is centered around x = 0. The lecturer clarifies that the Maclaurin series is simply the Taylor series with all terms evaluated at zero. An example is provided for the cosine function, where the derivatives up to the eighth order are calculated and substituted into the Maclaurin series formula. The paragraph also discusses the simplification of the series by recognizing that odd powers of x will have zero derivatives, thus simplifying the series. The lecturer concludes with a reminder to discuss any unclear points with peers, ending the session with a traditional greeting.

Mindmap

Keywords

๐Ÿ’กTaylor Series

The Taylor Series is a mathematical representation of a function as an infinite sum of terms calculated from the values of the function's derivatives at a single point. In the script, the Taylor Series is the central topic, with the lecturer explaining its definition and application to various functions. For example, the script discusses the Taylor Series for the function 'f(x)' at a point 'a', emphasizing its components such as the function's derivatives and the factorial.

๐Ÿ’กDerivative

A derivative in calculus represents the rate at which a function changes with respect to its variable. The script mentions finding the first, second, third, and higher-order derivatives of functions to construct their Taylor Series. For instance, when determining the Taylor Series for 'f(x) = x' at 'x = 2', the lecturer calculates the first derivative as '1' and the second derivative as '0', which are then used in the series expansion.

๐Ÿ’กFactorial

The factorial of a non-negative integer 'n', denoted by 'n!', is the product of all positive integers less than or equal to 'n'. In the context of the Taylor Series formula, factorials are used to scale the coefficients of the series terms. The script explains that the factorial is integral to the formula, as seen when discussing the coefficients of the series for 'f(x)'.

๐Ÿ’กMaclaurin Series

A Maclaurin Series is a special case of a Taylor Series where the function is expanded around the point 'x = 0'. The script distinguishes the Maclaurin Series from the general Taylor Series by setting 'a = 0' and using it to find the series for functions like 'cos(x)'. The่ฎฒๅธˆ discusses the simplification that occurs when 'x' is substituted with '0', resulting in a series that only includes even powers of 'x'.

๐Ÿ’กFunction

In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output. The script revolves around functions and their Taylor and Maclaurin series expansions, using specific functions like 'f(x) = x', 'f(x) = sin(x)', and 'f(x) = x^x' to illustrate the concepts.

๐Ÿ’กInterval

An interval in mathematics, particularly in calculus, refers to a continuous range of values within which a function is defined or a series converges. The script mentions defining the Taylor Series on a certain interval, indicating the importance of the domain in which the series is valid.

๐Ÿ’กRemainder Term

The remainder term in a Taylor Series is the difference between the function and its series approximation. It represents the error introduced by truncating the series to a finite number of terms. The script refers to the 'suku sisa' or remainder when discussing the approximation of functions using the Taylor Series and its truncated terms.

๐Ÿ’กTrigonometric Functions

Trigonometric functions are functions of an angle, relating the angles of a triangle to the lengths of its sides. In the script, the่ฎฒๅธˆuses the sine and cosine functions to demonstrate the Taylor Series, showing how their derivatives can be used to construct their series expansions around 'x = ฯ€/2'.

๐Ÿ’กExponential Function

An exponential function is a function of the form 'f(x) = a * b^x', where 'a' and 'b' are constants, and 'b' is positive. The script briefly touches on the exponential function when discussing the Taylor Series, although it does not provide a detailed example.

๐Ÿ’กPower Function

A power function is a function of the form 'f(x) = x^n', where 'n' is a real number. The script uses the power function 'f(x) = x^x' to illustrate the process of finding its Taylor Series, highlighting the recursive nature of its derivatives.

Highlights

Introduction to the topic of Taylor and Maclaurin series by Suryani, a lecturer for Calculus 2.

Definition of Taylor series, including its mathematical representation with derivatives up to an infinite order.

Explanation of the factorial function and its role in the Taylor series formula.

The concept of the remainder term in Taylor series and its significance in the approximation of functions.

Derivation of the Taylor series for a function f(x) at a point x=a.

Example calculation of the Taylor series for a function f(x) = x at x = 2.

Step-by-step process of finding derivatives and substituting them into the Taylor series formula.

Importance of considering the factorial in the calculation of each term of the series.

Discussion on the remainder terms and their impact on the accuracy of the series approximation.

Application of the Taylor series to the function f(x) = sin(x) at x = ฯ€/2.

Explanation of the periodic nature of trigonometric functions and its effect on their derivatives.

Calculation of the Maclaurin series, a special case of the Taylor series at x = 0.

Derivation of the Maclaurin series for the cosine function, cos(x).

Clarification on the difference between odd and even powers in the Maclaurin series and their derivatives.

Example of deriving the Maclaurin series for a function f(x) = x^x, highlighting the complexity of higher-order derivatives.

Emphasis on the practical applications of Taylor and Maclaurin series in various mathematical and scientific fields.

Encouragement for students to discuss any unclear concepts with their professors for further understanding.

Closing remarks with well-wishes and a reminder of the importance of the material covered.

Transcripts

play00:00

hai hai

play00:23

Hai assalamualaikum warahmatullahi

play00:25

wabarakatuh perkenalkan nama saya

play00:28

Suryani saya salah satu dosen untuk

play00:30

matakuliah kalkulus 2 Pada kesempatan

play00:33

kali ini saya akan membahas mengenai

play00:36

deret Taylor dan mclaurin definisi dari

play00:42

deret Taylor itu adalah misalkan Saya

play00:45

punya suatu fungsi fx gimana FX ini

play00:48

mempunyai turun ke n artinya dia punya

play00:51

turunan pertama kuliah turunan kedua

play00:53

ketiga keempat kelima keenam dan

play00:56

seterusnya gitu ya sampai dia mempunyai

play01:00

turunan di suku ke tak hingga dimana

play01:04

kita mendefinisikan ini pada suatu

play01:06

interval bukan yang memuat aja dia itu

play01:10

terdapat di interval buka maka deret

play01:13

pangkat dari suatu efektif

play01:16

Hai itu dituliskan seperti ini ya jadi

play01:18

speak makanya dari nol sampai Infinite

play01:21

dimana turunan fungsi f purna ke Kak Ya

play01:27

turun ke Kak dari fungsi f bayi2 bagi

play01:31

dengan K factory Al seperti itu bacanya

play01:33

nah kemudian akan faktorial itu

play01:36

faktorial itu rumusnya adalah qadhi kali

play01:40

kami satu dikalikan mint dua kali kami 3

play01:43

dan seterusnya sampai dikali tiga kali

play01:47

dua kali satu nah itu definisi dari Kak

play01:50

faktorial Ya dari harusnya di kali sama

play01:52

x-men ap4k ya Jadi ada esmina ^ tagnya

play01:57

kemudian kalau seandainya sigmanya saya

play02:00

Uraikan bentuknya akan seperti ini jadi

play02:04

Eva dikali F aksen afr-1 faktorial

play02:07

dikali X min a&d tambah turunan kedua

play02:10

dititik ar2 faktorial dikali X Mira

play02:14

faktorial begitu

play02:16

Nia sampai kita melewatkan turunan ke-n

play02:19

dari fungsi f dititik a dan seterusnya

play02:22

jadi masih ada titik-titik ke

play02:23

belakangnya nah biasanya ini maaf aku

play02:28

saya deret ini kita sebut dengan deret

play02:31

Taylor yang dibangkitkan oleh fungsi f

play02:34

dititik x = a gitu ya Nah untuk

play02:37

suku-suku yang rendah tarik suku-suku

play02:41

yang tinggi jadi misalkan turunan ke 8 9

play02:45

10 itu kita sebut dengan suku sisa ya

play02:48

jadi suku yang adtu runan yaitu sudah

play02:52

turunan tinggi udah turun pangkat tinggi

play02:54

itu kita sebut dengan suku sisa ya Nah

play02:58

contohnya Tentukan deret Taylor dari

play03:01

fungsi fx = x di X = 2 ya karena tadi

play03:06

deret Taylor itu ada unsur turunan

play03:09

pertama turunan kedua ketiga keempat dan

play03:12

seterusnya maka saya cari terlebih dulu

play03:14

turun pertamanya

play03:16

Hai Natuna pertama dari super X itu

play03:18

adalah ekspresi tukang batu x pangkat

play03:21

min 1 ya berarti turunnya pertamanya min

play03:23

1 per x pangkat 2 atau min x pangkat

play03:28

minus 2 gitu nah saya tool seperti ini

play03:30

in 1 x pangkat 2 nah kemudian turunan

play03:34

kedua itu diperoleh dari turunan pertama

play03:36

yang kalian turunkan lagi gitu Ini kan

play03:38

bentuk dari min 1 per x kuadrat itu

play03:41

adalah x pangkat min 2 min x pangkat min

play03:45

2 nabati turunannya Min kali min 2 2x

play03:49

pangkat kurangnya satu batu jadinya mym3

play03:52

nah saya kulit seperti ini dua per x

play03:55

pangkat 3 nah begitu juga dengan suruh

play03:57

pangkat tiga itu diperoleh dari turunan

play03:59

^ 2-nya turun keduanya kalian turunkan

play04:02

lagi ya kemudian turunan ke 4 nya Kalau

play04:06

turun keempat itu hati-hati ya di sini

play04:08

harus ada kurangnya gitu nah ini kalau

play04:11

ada kurung dengan tidak ada kurung itu

play04:13

beda makna jadi kalau ada turun kurung

play04:16

itu berarti dia adalah turunan ke 4 dari

play04:18

fungsi fx Kalau tidak ada kurungnya

play04:21

berarti itu adalah x ^ 4x itu hati-hati

play04:24

ya Nah kemudian karena tadi kita punya

play04:27

aa nya itu adalah dua maka Kalian cari

play04:29

f2f aksen dua F12 N2 begitu seterusnya

play04:33

ya artinya semua es yang ada di sini

play04:36

kamu ganti sama2 kemudian disitu Ya

play04:40

seperti ini nah begitu disini saya

play04:44

selesaikan sampai turunan ke 4 kalian

play04:48

boleh menghitung ini sampai Ternate 5

play04:50

keenam ketujuh gitu nah sisanya itu

play04:53

adalah suku sisanya ya seperti itu Nah

play04:57

kita tahu tadi deret Taylor itu kan

play05:00

bentuknya seperti ini ya Nah kalian

play05:03

ganti semua XD sama2 eh sorry semuanya

play05:07

ya semuanya sama2 nah kemudian kalian

play05:10

subtitusikan nilai yang tadi jadi kita

play05:12

kan tadi udah punya nilai f2f aksen 2R

play05:16

13 N2 begitu seterusnya kemudian

play05:18

dihitung dengan hati-hati di sini ada

play05:20

faktorialnya ada satu faktorial 2

play05:22

faktorial tiga faktorial Nah ketika

play05:25

kalian sudah hitung nah ini adalah

play05:27

hasilnya jadi setengah dikurangi

play05:30

seperempat x218 dikali X min 2 kuadrat

play05:34

Iya begitu seterusnya ditambah

play05:36

titik-titik ini dimana titik-titik ini

play05:38

adalah suku sisanya ya Jadi nanti

play05:41

conditional Kalian mau mengerjakannya

play05:43

sampai turunan keberapa ya Kemudian yang

play05:47

kedua aturan dari Thailand dari fungsi

play05:50

fx = 61 plus X nah ini di X = 1 jadi

play05:55

prosedur ini sama seperti tadi Kalian

play05:57

cari dulu Land satu prosesnya cari

play06:02

turunan pertama turunan pertama dari lem

play06:04

satu + F1 adalah satu persatu + F

play06:07

kemudian cari turunan kedua dengan cara

play06:10

kalian turunkan turunan pertamanya Aa

play06:13

berarti jadinya minus yah minus 1

play06:16

R1 + X dikuadrat in kalau turunan

play06:19

ketiganya berarti dua ya dua persatu + x

play06:24

^ 3 turunan keempatnya berarti min 6 ya

play06:29

Nah kita dan disini juga saya

play06:32

mengerjakannya sampai turunan ke 4

play06:34

kemudian karena tadi hanya satu maka

play06:38

ganti semua ST sama satu nah gitu kalian

play06:42

tinggal ganti semua es teh sama satu nah

play06:45

kemudian kalau sudah dapatkan nilai R1 F

play06:48

aksen satu f12e 1 dan seterusnya tinggal

play06:51

dimasukkan ke ekspansi deret Taylor nya

play06:53

ya seperti ini nah jangan lupa nanti

play06:57

dihitung ya di sini ada satu faktorial 2

play07:00

faktorial tiga faktorial kemudian hasil

play07:03

akhirnya adalah ini Ok saya lanjutkan

play07:07

contoh yang ketiga itu adalah the ini

play07:10

masih tetap deret Taylor Ya tentukan

play07:12

deret Taylor dari fungsi fx = Sin X DX =

play07:15

phi per 2

play07:16

Hai Nah berarti kalian harus cari dulu

play07:19

turunan pertamanya turunan dari steam

play07:21

itu adalah tokoh turunan kedua berarti

play07:25

turunan dari cos Min Sin turunan ketiga

play07:28

berarti turunan dari bensin X tadi

play07:31

turunan Sin adalah kos ya berarti Min

play07:33

cos X turunan ke 4 berarti turunan dari

play07:36

Min cos X turunan dari cos itu adalah

play07:39

Min Sin X televisinet balik lagi ya ke

play07:43

sini ya udah berarti Toure kalimatnya

play07:46

cos X turunan keenamnya Min Sin X

play07:49

turunan ketujuhnya Min cos X jadi ya Oh

play07:53

saya sampai 6 ternyata disini kita jadi

play07:55

kalau kalian mau menyelesaikan sampai

play07:57

delapan yang enggak ada masalah lihat

play07:59

dilanjutkan saja karena tadi esnya itu

play08:01

saya ambil kiper2 diperbaiki 90ยฐ ya jadi

play08:05

sin90 itu adalah satu cos90 itu adalah

play08:09

nol ya Jadi tinggal di subtitusikan aja

play08:13

keturunan pertamanya nah seperti

play08:16

Ndah kalau kalian sudah memperoleh semua

play08:18

nilainya tinggal kalian masukkan ke

play08:21

deret trailernya ekspansi nya ya Nah

play08:25

seperti itu jangan lupa di Sederhanakan

play08:27

yah nilai dari satu faktorial 2

play08:30

faktorial tiga faktorial dan seterusnya

play08:32

Oke selanjutnya adalah tentang deret

play08:36

maclaurin Nah jadi deret maclaurin itu

play08:39

adalah deret Taylor tapi dimana dia itu

play08:42

dibangkitkan oleh fungsi f DX = 0 jadi

play08:45

esnya itu spesial x = 0 Jadi kalau ST =

play08:49

nol dia adalah deret maclaurin ya

play08:52

seperti itu Nah sehingga ekspansi

play08:55

deretnya itu ya Nah disini tidak ada

play08:57

ekstenal lagi karena hanya nol hanya ada

play09:00

f x kuadrat x ^ 3 begitu seterusnya ya

play09:03

Nah contohnya Tentukan deret maclaurin

play09:07

dari fungsi fx = cos X Nah berarti sama

play09:11

persis ketika kalian mengerjakan deret

play09:14

Taylor jadi cari dulu turun

play09:16

Hai pertamanya kedua ketiga keempat

play09:19

begitu seterusnya Griya turunan dari cos

play09:22

Min Sin Sunandar istirnya adalag Oh

play09:25

berarti ada minus ditulis ulang jurnal

play09:28

dari kos adalah mesin ada minusnya

play09:31

berarti Sin X turunan Sin adalah chord

play09:34

nah begitu seterusnya nah ini saya

play09:37

selesaikan sampai turunan ke-8 karena

play09:41

disini perintahnya Tentukan deret

play09:43

maclaurin Berarti semua esnya itu harus

play09:46

kamu ganti sama nol ya ganti semua x = 0

play09:50

kemudian kalian hitung itu ya Nah

play09:53

seperti ini baru kalian substitusikan ke

play09:56

deret maclaurin ya nah begitu ya Nah

play10:00

tinggal di substitusikan nilai f0f

play10:03

Arsenal FC absen nolnya ini nilai yang

play10:07

sudah dicegah anak Andri hanya sisa suku

play10:11

ke kenapa kenapa ya jadi x ^ 2x makan 4x

play10:15

^ X ^

play10:16

Hai Karena untuk yang ^ ganjil

play10:18

turunannya itu nilainya nol ya kemudian

play10:22

contoh berikutnya Tentukan direktori

play10:25

dari fungsi fx = x ^ x gitu ya Sama

play10:29

persis Kalian cari turunan pertama kedua

play10:32

ketiga dan seterusnya kebetulan turun

play10:34

naik pangkat x itu adalah air pangkat x

play10:36

turunkan lagi Eh pangkat x lagi gitu ya

play10:39

ingat karena dia directory kalian ganti

play10:42

semua X sama ya jadi ketika

play10:45

disubstitusikan ke deret maclaurin nya

play10:46

Nah ini adalah hasilnya ya oke demikian

play10:51

Apa yang dapat saya sampaikan pada

play10:53

kesempatan kali ini semoga bermanfaat

play10:55

untuk kalian semua Jika masih ada

play10:58

hal-hal yang belum kalian pahami silakan

play11:00

kalian diskusikan dengan dokter

play11:01

masing-masing ya Sekian dari saya semoga

play11:03

salamualaikum warahmatullahi wabarakatuh

play11:08

hai hai

Rate This
โ˜…
โ˜…
โ˜…
โ˜…
โ˜…

5.0 / 5 (0 votes)

Related Tags
CalculusTaylor SeriesMaclaurin SeriesFunction DerivativesMathematics EducationSeries ExpansionLecture ScriptEducational ContentMath AnalysisTrigonometric FunctionsPolynomial Approximation