Movimiento circular uniformemente acelerado (MCUA) ejemplo 1 de 5 | Física - Vitual

Vitual
19 Apr 201704:57

Summary

TLDREn este video, se explica cómo calcular la velocidad angular inicial de una rueda de ruleta que se detiene en 15 segundos. A través de un ejemplo con 20 revoluciones, se convierte el desplazamiento angular a radianes y se usa una fórmula del movimiento circular uniformemente acelerado para encontrar la velocidad angular inicial. Con una serie de pasos matemáticos, se determina que la velocidad angular inicial es de 16.8 radianes por segundo. El video es una excelente introducción a los conceptos de física relacionados con el movimiento angular.

Takeaways

  • 😀 La rueda de ruleta se detiene en 15 segundos, y se nos pide calcular su velocidad angular inicial en radianes por segundo.
  • 😀 El tiempo transcurrido es de 15 segundos, y en ese intervalo la velocidad angular final es cero.
  • 😀 En esos 15 segundos, la rueda da 20 revoluciones, lo que corresponde a un desplazamiento angular de 20 revoluciones.
  • 😀 Para convertir las revoluciones a radianes, se usa el factor de conversión de 2π radianes por revolución.
  • 😀 20 revoluciones equivalen a 125.7 radianes (al redondear a un decimal).
  • 😀 La magnitud de la velocidad angular inicial se calcula usando las ecuaciones del movimiento circular uniformemente acelerado.
  • 😀 La ecuación relevante es la número 2, que relaciona desplazamiento angular, velocidad angular final y tiempo.
  • 😀 La velocidad angular inicial se despeja como: (2 * desplazamiento angular) / tiempo.
  • 😀 Sustituyendo los valores, se obtiene que la velocidad angular inicial es igual a 16.8 radianes por segundo (al redondear a un decimal).
  • 😀 En conclusión, la velocidad angular inicial de la rueda de ruleta es de 16.8 radianes por segundo.

Q & A

  • ¿Qué información se nos proporciona al inicio del ejercicio sobre la ruleta?

    -Nos informan que la ruleta se detiene en 15 segundos y que en ese tiempo da 20 revoluciones. Además, nos indican que la velocidad angular final es cero al detenerse.

  • ¿Qué significa que la ruleta se detenga en 15 segundos?

    -Significa que el tiempo transcurrido es de 15 segundos, y durante ese tiempo, la rueda se desacelera hasta detenerse, es decir, su velocidad angular final es cero.

  • ¿Cómo se debe convertir el desplazamiento angular de revoluciones a radianes?

    -Para convertir revoluciones a radianes, usamos el factor de conversión 1 revolución = 2π radianes. Entonces, multiplicamos el número de revoluciones por 2π.

  • ¿Cuántos radianes son equivalentes a 20 revoluciones?

    -Multiplicando 20 revoluciones por 2π, obtenemos 125.7 radianes (aproximadamente).

  • ¿Por qué la velocidad angular final de la ruleta es cero?

    -La ruleta se detiene al final de los 15 segundos, lo que significa que su velocidad angular llega a cero al término del movimiento.

  • ¿Qué ecuación se utiliza para calcular la velocidad angular inicial?

    -Se utiliza la ecuación de movimiento circular uniformemente acelerado: ω_inicial = (2θ / t) - ω_final, donde ω_final es cero en este caso.

  • ¿Qué datos son necesarios para calcular la velocidad angular inicial de la ruleta?

    -Se necesitan el desplazamiento angular (en radianes), el tiempo de detención y la velocidad angular final (que es cero).

  • ¿Cómo se obtiene la velocidad angular inicial en este ejercicio?

    -Sustituyendo los valores en la ecuación: ω_inicial = (2 * 125.7 rad) / 15 s = 16.8 rad/s.

  • ¿Por qué no es necesario incluir la velocidad angular final en los cálculos?

    -Porque la velocidad angular final es cero, lo que hace que no influya en el cálculo de la velocidad angular inicial.

  • ¿Cuál es el valor de la velocidad angular inicial de la ruleta?

    -La velocidad angular inicial es 16.8 radianes por segundo, redondeada a un decimal.

Outlines

plate

This section is available to paid users only. Please upgrade to access this part.

Upgrade Now

Mindmap

plate

This section is available to paid users only. Please upgrade to access this part.

Upgrade Now

Keywords

plate

This section is available to paid users only. Please upgrade to access this part.

Upgrade Now

Highlights

plate

This section is available to paid users only. Please upgrade to access this part.

Upgrade Now

Transcripts

plate

This section is available to paid users only. Please upgrade to access this part.

Upgrade Now
Rate This

5.0 / 5 (0 votes)

Related Tags
FísicaMovimiento CircularVelocidad AngularRuletaAceleraciónCálculosRevolucionesDesplazamiento AngularEducaciónCiencias ExactasVídeo Tutorial
Do you need a summary in English?