Early Computing: Crash Course Computer Science #1

CrashCourse
22 Feb 201711:53

Summary

TLDRCrashCourse Computer Science introduces viewers to the evolution of computing, from basic devices like the abacus to modern computers. The series covers the impact of computing on society, the Industrial Revolution's parallel, and the progression of devices from Charles Babbage's Difference Engine to Ada Lovelace's Analytical Engine. It highlights the significance of computing in various fields and sets the stage for digital computers, all without teaching programming. The script also touches on the role of 'human computers' and the pivotal moment when the US census led to the foundation of IBM.

Takeaways

  • 🌐 The video introduces the CrashCourse Computer Science series, which aims to explore computing as a discipline and technology without teaching programming.
  • 🔌 The importance of computers in modern society is highlighted, noting that a sudden shutdown would have catastrophic effects on various sectors.
  • 🏭 The script discusses how computing technology has transformed industries, similar to the impact of the Industrial Revolution on agriculture, industry, and daily life.
  • 📱 The comparison of today's complex computers to simple machines that perform actions through layers of abstraction is made to emphasize the underlying simplicity of computing.
  • 🛠️ The series promises to break down the layers of computing, starting from basic binary to complex systems like the internet.
  • 📚 The abacus is identified as one of the earliest computing devices, functioning as a manual calculator and state storage device.
  • 🔢 The script explains the concept of computing devices that simplify complex calculations, making them faster, easier, and more accurate.
  • 🕊️ The term 'computer' originally referred to a person who performed calculations, highlighting the evolution of the term to describe machines.
  • 🛠️📚 The Step Reckoner by Gottfried Leibniz is mentioned as an early mechanical calculator capable of basic arithmetic operations.
  • 🎯 The military's use of computing for complex problems like artillery firing is discussed, showing the practical applications of early computing.
  • 🔍 Charles Babbage's Difference Engine and Analytical Engine are presented as significant milestones in the evolution of computing, with the latter being considered a 'general-purpose computer'.
  • 👩‍💻 Ada Lovelace is recognized as the world's first programmer for her work on the Analytical Engine, emphasizing the early development of computer programming.
  • 📊 The US census of 1890 is used as an example of how computing technology addressed a significant real-world problem, leading to time and cost savings.
  • 🏢 The foundation of IBM through the merger of tabulating machine companies is noted, marking the beginning of the commercialization of computing technology.

Q & A

  • What is the main focus of the CrashCourse Computer Science series?

    -The main focus of the series is to explore a range of computing topics as a discipline and technology, rather than teaching programming. It aims to provide an understanding of the role of computing in society and its impact on various aspects of life.

  • Why were the earliest computing devices like the abacus created?

    -The earliest computing devices, such as the abacus, were created to handle the scale of society that had become too large for a single person to keep and manipulate in their mind, such as counting large numbers of people or cattle.

  • How does the abacus function as a simple calculator?

    -The abacus functions as a simple calculator by using beads on wires to represent different powers of ten. Users can slide beads to the right to add numbers and to the left to subtract, with the abacus storing the current state of the computation.

  • What was the significance of the Step Reckoner in the history of computing?

    -The Step Reckoner, built by Gottfried Leibniz, was significant because it was the first machine that could perform all four basic arithmetic operations (addition, subtraction, multiplication, and division) automatically, using a series of gears to represent digits.

  • What was the primary role of 'human computers' before the 20th century?

    -The primary role of 'human computers' was to perform calculations, often with the help of machines, but sometimes not. They were responsible for assembling pre-computed tables for various computations, which were used when quick results were needed.

  • Why were Range Tables important for military artillery?

    -Range Tables were important for military artillery because they allowed gunners to quickly look up the correct angle to set their cannons based on environmental conditions and the desired firing distance, improving the accuracy of artillery fire.

  • What problem did Charles Babbage's Difference Engine aim to solve?

    -The Difference Engine aimed to solve the problem of manually computing large mathematical tables, which was time-consuming and prone to errors. It was designed to approximate polynomials and automate the computation of mathematical tables.

  • Who is considered the world's first programmer and why?

    -Ada Lovelace is considered the world's first programmer because she wrote hypothetical programs for the Analytical Engine, envisioning the potential for a 'general-purpose computer' to perform a sequence of operations based on given data.

  • What was the significance of Herman Hollerith's tabulating machine for the 1890 US Census?

    -Herman Hollerith's tabulating machine was significant because it greatly increased the speed of data processing for the census, reducing the time required from what was projected to be 13 years to just two and a half years, thus saving the census office millions of dollars.

  • How did the success of Hollerith's machine lead to the formation of IBM?

    -The success of Hollerith's machine in the 1890 Census demonstrated the value of computing in business and government, leading to the formation of The Tabulating Machine Company. This company later merged with others to become The International Business Machines Corporation, or IBM.

  • What was the primary motivation for the development of digital computers?

    -The primary motivation for the development of digital computers was the need for faster and more flexible tools for processing data, driven by the explosion in world population and the rise of globalized trade in the mid-1900s.

Outlines

00:00

💻 Introduction to CrashCourse Computer Science

Carrie Anne welcomes viewers to CrashCourse Computer Science, explaining that the series will explore a wide range of computing topics but will not focus on teaching programming. She highlights the essential role computers play in modern society and compares this technological revolution to the Industrial Revolution. The series aims to break down complex computing concepts into understandable parts and contextualize the significance of computing in our lives.

05:02

🧮 The Origins of Computation

The script traces the origins of computation back to the abacus, invented in Mesopotamia around 2500 BCE, which functioned as a manual calculator. It explains how the abacus was used to perform basic arithmetic operations and manage large numbers, setting the stage for future computing devices. The script also mentions other historical computing devices like the astrolabe and slide rule, which simplified complex calculations and amplified human mental abilities.

10:03

🔢 The Evolution of Mechanical Calculators

This section discusses the development of mechanical calculators, focusing on the Step Reckoner built by Gottfried Leibniz in 1694. Leibniz's device, which used a system of gears to perform arithmetic operations, was a significant advancement in computing technology. The script highlights the limitations of early mechanical calculators and the reliance on human 'computers' for complex calculations, leading to the development of pre-computed tables for faster and more accurate results.

📈 Charles Babbage and the Birth of the General-Purpose Computer

Charles Babbage's work on the Difference Engine and Analytical Engine marked a turning point in the history of computing. The script describes how Babbage's machines aimed to automate complex calculations and introduced the concept of a general-purpose computer. It also highlights Ada Lovelace's contributions as the first computer programmer and the long-lasting influence of Babbage's ideas on future computer scientists.

📊 The Rise of Electromechanical Business Machines

Herman Hollerith's invention of the electromechanical tabulating machine revolutionized data processing, particularly for the US Census of 1890. The script explains how Hollerith's use of punch cards and electrical circuits significantly sped up the tabulation process. This innovation laid the foundation for the development of business machines and the establishment of IBM, which played a crucial role in transforming commerce and government operations in the early 20th century.

Mindmap

Keywords

💡Computer Science

Computer Science is the study of computers and computing devices, encompassing the design, development, and application of computer systems and software. In the video, it is the overarching theme as the series aims to explore various computing topics, from the basics of bits and bytes to complex systems like operating systems and artificial intelligence, illustrating the broad impact of computer science on modern society.

💡Bits and Bytes

Bits and bytes are fundamental units of data in computing. A bit represents a single binary digit, while a byte is typically a group of eight bits. The script mentions starting from these basic concepts, emphasizing the foundational role they play in understanding the complex systems that make up modern computing.

💡Transistors

Transistors are semiconductor devices used to amplify or switch electronic signals and electrical power. They are a key component in modern electronic devices. The video script refers to transistors as part of the journey from basic computing elements to more complex systems, highlighting their importance in the evolution of computers.

💡Logic Gates

Logic gates are the basic building blocks of a digital circuit, representing Boolean functions and used in the design of digital circuits and systems. In the script, logic gates are part of the progression from simple computational elements to the creation of CPUs and other complex computational structures.

💡Operating Systems

An operating system (OS) is the software that manages computer hardware and software resources and provides common services for computer programs. The video script mentions operating systems as part of the advanced topics that will be covered, showing their critical role in the functioning of computers and computing devices.

💡Virtual Reality

Virtual Reality (VR) is a simulated experience that can be similar to or completely different from the real world. It is a technology that has been enabled by advances in computer science. The script mentions VR as one of the advanced applications of computing, demonstrating the wide-ranging impact of computer technology.

💡Abacus

The abacus is an ancient calculating tool invented around 2500 BCE in Mesopotamia. It is a hand-operated calculator that helps with addition and subtraction. The video script uses the abacus as an example of early computing devices, illustrating the historical roots of computation.

💡Industrial Revolution

The Industrial Revolution refers to the period of rapid industrialization that began in the late 18th century. It brought significant changes in agriculture, manufacturing, mining, and transportation. The script draws a parallel between the impact of the Industrial Revolution and the current influence of computing technology on society.

💡Human Computers

Human computers were people who performed calculations, often with the aid of simple tools, before the advent of modern computers. The script mentions 'human computers' as a historical reference to individuals who carried out complex calculations, emphasizing the evolution from manual to automated computation.

💡Charles Babbage

Charles Babbage was an early computer pioneer known for his designs of the Difference Engine and the Analytical Engine. He is often referred to as the 'father of computing'. The script discusses Babbage's contributions to the field, highlighting his visionary ideas that laid the groundwork for modern computer design.

💡Herman Hollerith

Herman Hollerith was an inventor and entrepreneur known for his development of the Hollerith tabulator, which was used in the 1890 United States Census. The script describes Hollerith's machine as a significant step towards automated data processing, leading to the foundation of IBM and the modernization of business and government data handling.

Highlights

CrashCourse Computer Science series introduction by Carrie Anne, covering topics from basic computing elements to advanced technologies.

Clarification that the series will not teach programming but will explore computing as a discipline and technology.

The critical role of computers in modern society, including potential catastrophic effects of a sudden shut down.

The comparison of computing technology's impact to the Industrial Revolution, highlighting advancements in various sectors.

The abacus as the earliest recognized computing device, functioning as a manual calculator and state storage.

The evolution of computing devices over 4000 years, including the astrolabe and slide rule, enhancing calculation efficiency.

The historical shift of the term 'computer' from a job title to a device, with the Step Reckoner as an early example.

Charles Babbage's vision for the Difference Engine, a mechanical device to automate polynomial approximations.

The Analytical Engine, Babbage's concept of a general-purpose computer, and Ada Lovelace's contribution as the first programmer.

The practical application of computing in the 1890 US Census, emphasizing the efficiency of Herman Hollerith's tabulating machine.

The founding of IBM through the merger of tabulating machine companies, indicating the growing business value of computing.

The demand for faster and more flexible data processing tools due to global population growth and trade, paving the way for digital computers.

The significance of pre-computed tables in the era before digital computers, used for quick lookup of complex calculations.

The use of Range Tables in military artillery to improve accuracy, highlighting early computational applications in warfare.

The limitations of mechanical calculators in handling complex real-world problems and the time-consuming nature of computation.

The concept of layers of abstraction in computing, simplifying complex actions through successive simplification.

The independence of episodes in the series, allowing viewers to understand computing concepts without sequential viewing.

The potential future impacts of computing, suggesting that the most significant contributions of this technology are yet to come.

Transcripts

play00:03

Hello world, I’m Carrie Anne, and welcome to CrashCourse Computer Science!

play00:06

Over the course of this series, we’re going to go from bits, bytes, transistors and logic

play00:10

gates, all the way to Operating Systems, Virtual Reality and Robots!

play00:14

We’re going to cover a lot, but just to clear things up - we ARE NOT going to teach

play00:17

you how to program.

play00:18

Instead, we’re going to explore a range of computing topics as a discipline and a

play00:22

technology.

play00:23

Computers are the lifeblood of today’s world.

play00:25

If they were to suddenly turn off, all at once, the power grid would shut down, cars

play00:29

would crash, planes would fall, water treatment plants would stop, stock markets would freeze,

play00:33

trucks with food wouldn’t know where to deliver, and employees wouldn’t get paid.

play00:37

Even many non-computer objects - like DFTBA shirts and the chair I’m sitting on – are

play00:41

made in factories run by computers.

play00:44

Computing really has transformed nearly every aspect of our lives.

play00:47

And this isn’t the first time we’ve seen this sort of technology-driven global change.

play00:50

Advances in manufacturing during the Industrial Revolution brought a new scale to human civilization

play00:55

- in agriculture, industry and domestic life.

play00:57

Mechanization meant superior harvests and more food, mass produced goods, cheaper and

play01:02

faster travel and communication, and usually a better quality of life.

play01:05

And computing technology is doing the same right now – from automated farming and medical

play01:09

equipment, to global telecommunications and educational opportunities, and new frontiers

play01:13

like Virtual Reality and Self Driving Cars.

play01:16

We are living in a time likely to be remembered as the Electronic Age.

play01:21

With billions of transistors in just your smartphones, computers can seem pretty complicated,

play01:25

but really, they’re just simple machines that perform complex actions through many

play01:29

layers of abstraction.

play01:31

So in this series, we’re going break down those layers, and build up from simple 1’s

play01:35

and 0’s, to logic units, CPUs, operating systems, the entire internet and beyond.

play01:42

And don’t worry, in the same way someone buying t-shirts on a webpage doesn’t need

play01:45

to know how that webpage was programmed, or the web designer doesn’t need to know how

play01:49

all the packets are routed, or router engineers don’t need to know about transistor logic,

play01:54

this series will build on previous episodes but not be dependent on them.

play01:58

By the end of this series, I hope that you can better contextualize computing’s role

play02:02

both in your own life and society, and how humanity's (arguably) greatest invention is

play02:07

just in its infancy, with its biggest impacts yet to come.

play02:10

But before we get into all that, we should start at computing’s origins, because although

play02:14

electronic computers are relatively new, the need for computation is not.

play02:24

INTRO

play02:27

The earliest recognized device for computing

play02:30

was the abacus, invented in Mesopotamia around 2500 BCE.

play02:34

It’s essentially a hand operated calculator, that helps add and subtract many numbers.

play02:39

It also stores the current state of the computation, much like your hard drive does today.

play02:43

The abacus was created because, the scale of society had become greater than what a

play02:47

single person could keep and manipulate in their mind.

play02:49

There might be thousands of people in a village or tens of thousands of cattle.

play02:53

There are many variants of the abacus, but let’s look at a really basic version with

play02:57

each row representing a different power of ten.

play02:59

So each bead on the bottom row represents a single unit, in the next row they represent

play03:04

10, the row above 100, and so on.

play03:06

Let’s say we have 3 heads of cattle represented by 3 beads on the bottom row on the right side.

play03:11

If we were to buy 4 more cattle we would just slide 4 more beads to the right for a total of 7.

play03:17

But if we were to add 5 more after the first 3 we would run out of beads, so we would slide

play03:22

everything back to the left, slide one bead on the second row to the right, representing

play03:26

ten, and then add the final 2 beads on the bottom row for a total of 12.

play03:30

This is particularly useful with large numbers.

play03:33

So if we were to add 1,251 we would just add 1 to the bottom row, 5 to the second row,

play03:39

2 to the third row, and 1 to the fourth row - we don’t have to add in our head and the

play03:44

abacus stores the total for us.

play03:46

Over the next 4000 years, humans developed all sorts of clever computing devices, like

play03:50

the astrolabe, which enabled ships to calculate their latitude at sea.

play03:53

Or the slide rule, for assisting with multiplication and division.

play03:56

And there are literally hundred of types of clocks created that could be used to calculate

play04:00

sunrise, tides, positions of celestial bodies, and even just the time.

play04:05

Each one of these devices made something that was previously laborious to calculate much

play04:09

faster, easier, and often more accurate –– it lowered the barrier to entry, and at the same

play04:14

time, amplified our mental abilities –– take note, this is a theme we’re going to touch

play04:17

on a lot in this series.

play04:19

As early computer pioneer Charles Babbage said: “At each increase of knowledge, as

play04:24

well as on the contrivance of every new tool, human labour becomes abridged.”

play04:28

However, none of these devices were called “computers”.

play04:31

The earliest documented use of the word “computer” is from 1613, in a book by Richard Braithwait.

play04:36

And it wasn’t a machine at all - it was a job title.

play04:38

Braithwait said, “I have read the truest computer of times,

play04:41

and the best arithmetician that ever breathed, and he reduceth thy dayes into a short number”.

play04:46

In those days, computer was a person who did calculations, sometimes with the help of machines,

play04:51

but often not.

play04:52

This job title persisted until the late 1800s, when the meaning of computer started shifting

play04:56

to refer to devices.

play04:57

Notable among these devices was the Step Reckoner, built by German polymath Gottfried Leibniz

play05:02

in 1694.

play05:03

Leibniz said “... it is beneath the dignity of excellent men to waste their time in calculation

play05:08

when any peasant could do the work just as accurately with the aid of a machine.”

play05:11

It worked kind of like the odometer in your car, which is really just a machine for adding

play05:15

up the number of miles your car has driven.

play05:17

The device had a series of gears that turned; each gear had ten teeth, to represent the

play05:21

digits from 0 to 9.

play05:22

Whenever a gear bypassed nine, it rotated back to 0 and advanced the adjacent gear by one tooth.

play05:27

Kind of like when hitting 10 on that basic abacus.

play05:31

This worked in reverse when doing subtraction, too.

play05:33

With some clever mechanical tricks, the Step Reckoner was also able to multiply and divide

play05:37

numbers.

play05:38

Multiplications and divisions are really just many additions and subtractions.

play05:42

For example, if we want to divide 17 by 5, we just subtract 5, then 5, then 5 again,

play05:47

and then we can’t subtract any more 5’s… so we know 5 goes into 17 three times, with

play05:52

2 left over.

play05:53

The Step Reckoner was able to do this in an automated way, and was the first machine that

play05:57

could do all four of these operations.

play06:00

And this design was so successful it was used for the next three centuries of calculator design.

play06:04

Unfortunately, even with mechanical calculators, most real world problems required many steps

play06:09

of computation before an answer was determined.

play06:11

It could take hours or days to generate a single result.

play06:14

Also, these hand-crafted machines were expensive, and not accessible to most of the population.

play06:17

So, before 20th century, most people experienced computing through pre-computed tables assembled

play06:23

by those amazing “human computers” we talked about.

play06:26

So if you needed to know the square root of 8 million 6 hundred and 75 thousand 3 hundred

play06:30

and 9, instead of spending all day hand-cranking your step reckoner, you could look it up in

play06:34

a huge book full of square root tables in a minute or so.

play06:37

Speed and accuracy is particularly important on the battlefield, and so militaries were

play06:41

among the first to apply computing to complex problems.

play06:44

A particularly difficult problem is accurately firing artillery shells, which by the 1800s

play06:48

could travel well over a kilometer (or a bit more than half a mile).

play06:51

Add to this varying wind conditions, temperature, and atmospheric pressure, and even hitting

play06:56

something as large as a ship was difficult.

play06:58

Range Tables were created that allowed gunners to look up environmental conditions and the

play07:01

distance they wanted to fire, and the table would tell them the angle to set the canon.

play07:05

These Range Tables worked so well, they were used well into World War Two.

play07:09

The problem was, if you changed the design of the cannon or of the shell, a whole new

play07:13

table had to be computed, which was massively time consuming and inevitably led to errors.

play07:18

Charles Babbage acknowledged this problem in 1822 in a paper to the Royal Astronomical

play07:22

Society entitled: “Note on the application of machinery to the computation of astronomical

play07:27

and mathematical tables".

play07:29

Let’s go to the thought bubble.

play07:30

Charles Babbage proposed a new mechanical device called the Difference Engine, a much

play07:35

more complex machine that could approximate polynomials.

play07:38

Polynomials describe the relationship between several variables - like range and air pressure,

play07:43

or amount of pizza Carrie Anne eats and happiness.

play07:45

Polynomials could also be used to approximate logarithmic and trigonometric functions, which

play07:49

are a real hassle to calculate by hand.

play07:52

Babbage started construction in 1823, and over the next two decades, tried to fabricate

play07:56

and assemble the 25,000 components, collectively weighing around 15 tons.

play08:01

Unfortunately, the project was ultimately abandoned.

play08:03

But, in 1991, historians finished constructing a Difference Engine based on Babbage's drawings

play08:08

and writings - and it worked!

play08:10

But more importantly, during construction of the Difference Engine, Babbage imagined

play08:14

an even more complex machine - the Analytical Engine.

play08:17

Unlike the Difference Engine, Step Reckoner and all other computational devices before

play08:21

it - the Analytical Engine was a “general purpose computer”.

play08:24

It could be used for many things, not just one particular computation; it could be given

play08:28

data and run operations in sequence; it had memory and even a primitive printer.

play08:32

Like the Difference Engine, it was ahead of its time, and was never fully constructed.

play08:36

However, the idea of an “automatic computer” – one that could guide itself through a

play08:40

series of operations automatically, was a huge deal, and would foreshadow computer programs.

play08:45

English mathematician Ada Lovelace wrote hypothetical programs for the Analytical Engine, saying,

play08:50

“A new, a vast, and a powerful language is developed for the future use of analysis.”

play08:55

For her work, Ada is often considered the world’s first programmer.

play08:58

The Analytical Engine would inspire, arguably, the first generation of computer scientists,

play09:03

who incorporated many of Babbage’s ideas in their machines.

play09:06

This is why Babbage is often considered the "father of computing".

play09:09

Thanks Thought Bubble!

play09:10

So by the end of the 19th century, computing devices were used for special purpose tasks

play09:14

in the sciences and engineering, but rarely seen in business, government or domestic life.

play09:18

However, the US government faced a serious problem for its 1890 census that demanded

play09:23

the kind of efficiency that only computers could provide.

play09:25

The US Constitution requires that a census be conducted every ten years, for the purposes

play09:30

of distributing federal funds, representation in congress, and good stuff like that.

play09:33

And by 1880, the US population was booming, mostly due to immigration.

play09:38

That census took seven years to manually compile and by the time it was completed, it was already

play09:42

out of date – and it was predicted that the 1890 census would take 13 years to compute.

play09:48

That’s a little problematic when it’s required every decade!

play09:50

The Census bureau turned to Herman Hollerith, who had built a tabulating machine.

play09:54

His machine was “electro-mechanical” – it used traditional mechanical systems for keeping

play09:58

count, like Leibniz’s Step Reckoner –– but coupled them with electrically-powered components.

play10:02

Hollerith’s machine used punch cards which were paper cards with a grid of locations

play10:06

that can be punched out to represent data.

play10:08

For example, there was a series of holes for marital status.

play10:11

If you were married, you would punch out the married spot, then when the card was inserted

play10:15

into Hollerith’s machine, little metal pins would come down over the card – if a spot

play10:19

was punched out, the pin would pass through the hole in the paper and into a little vial

play10:23

of mercury, which completed the circuit.

play10:25

This now completed circuit powered an electric motor, which turned a gear to add one, in

play10:30

this case, to the “married” total.

play10:32

Hollerith’s machine was roughly 10x faster than manual tabulations, and the Census was

play10:36

completed in just two and a half years - saving the census office millions of dollars.

play10:41

Businesses began recognizing the value of computing, and saw its potential to boost

play10:44

profits by improving labor- and data-intensive tasks, like accounting, insurance appraisals,

play10:49

and inventory management.

play10:50

To meet this demand, Hollerith founded The Tabulating Machine Company, which later merged

play10:55

with other machine makers in 1924 to become The International Business Machines Corporation

play11:00

or IBM - which you’ve probably heard of.

play11:02

These electro-mechanical “business machines” were a huge success, transforming commerce

play11:07

and government, and by the mid-1900s, the explosion in world population and the rise

play11:11

of globalized trade demanded even faster and more flexible tools for processing data, setting

play11:17

the stage for digital computers, which we’ll talk about next week.

Rate This

5.0 / 5 (0 votes)

Related Tags
Computer ScienceAbacusTransistorsLogic GatesOperating SystemsVirtual RealityRoboticsIndustrial RevolutionElectronic AgeCharles BabbageAda LovelaceHerman HollerithIBMElectro-MechanicalData ProcessingComputational HistoryInnovationTechnology ImpactEducational Series