Why is this number everywhere?

Veritasium
28 Mar 202423:50

Summary

TLDREl número 37 se presenta como un dato curioso y aparentemente aleatorio que las personas tienden a escoger frecuentemente. Esta tendencia, conocida como el fenómeno blue-seven, se explora a través de diversas culturas y situaciones, revelando que 37 se percibe como un número格外 random. Además, se discuten las razones subyacentes de esta percepción, incluyendo la teoría de que los números primos, y específicamente 37, son especialmente aleatorios debido a su rareza y la imposibilidad de predecirlos mediante una fórmula. El vídeo también toca el concepto del problema del secretario y cómo la regla del 37% puede aplicarse a decisiones importantes en la vida, como el выбор de un compañero de vida. Finalmente, se sugiere que nuestra fascinación con 37 podría ser una manifestación de la forma en que nuestra mente entiende y busca patrones en el mundo que nos rodea.

Takeaways

  • 🔢 La elección aleatoria de números es un desafío para la psicología humana, ya que tendemos a favorecer ciertos números.
  • 🎩 El fenómeno llamado 'azul-siete' indica que la gente tiende a escoger el color azul y el número 7 de manera predecible.
  • 📈 En encuestas sobre números aleatorios, el número 37 sale con frecuencia como la elección más común entre 1 y 100.
  • 🤔 La fascinación por los números aleatorios nos lleva a investigar más a fondo el número 37 y sus apariciones en la vida cotidiana.
  • 🧙 Los trucos de magia profesional a menudo se basan en la predisposición de la audiencia a elegir el número 37.
  • 📚 La teoría de que los números primos son más aleatorios se debe a su aparición menos frecuente en la vida diaria y a la falta de fórmula para predecirlos.
  • 📈 Una encuesta en línea con 200,000 respuestas mostró que los números 73 y 37 fueron los más populares, pese a ser supuestamente aleatorios.
  • 📊 Los números primos, especialmente el 37, son vistos como más aleatorios debido a su rareza y a la imposibilidad de predecirlos con una fórmula exacta.
  • 🤓 El número 37 es interesante matemáticamente por ser un primo, un primo irregular, un primo cubano, un primo afortunado y otros títulos.
  • 🎯 El 37% de reglas para tomar decisiones, conocida como el problema de la secretaria o el problema del matrimonio, se basa en este número.
  • 🌐 La cantidad de referencias y coincidencias del número 37 en la vida diaria y la cultura demuestra su influencia en nuestra psique colectiva.

Q & A

  • ¿Por qué la gente tiende a escoger el número 37 como un número aleatorio?

    -La gente tiende a escoger el número 37 como un número aleatorio debido a un patrón psicológico conocido como el fenómeno blue-seven. Además, se ha sugerido que el número 37 es equivalente a este patrón cuando se pide a las personas seleccionar un número aleatorio entre 1 y 100. Esto se debe a que 37 es un número primo y parece ser percibido como un número más aleatorio que otros números, como los múltiplos de 10.

  • ¿Qué es el fenómeno blue-seven en psicología?

    -El fenómeno blue-seven es un patrón observado por psicólogos en el cual, cuando se le pide a las personas que elijan un color y un número de manera aleatoria, la combinación más común es elegir el color azul y el número 7. Este patrón ha sido observado en varias culturas diferentes.

  • ¿Por qué se considera aleatorio el número 37 en la cultura de programación?

    -En la cultura de programación, el número 37 se considera aleatorio según el 'Stanford MIT Jargon File', un diccionario de jerga hacker. Se menciona que es el número más comúnmente elegido cuando se pide a grupos de personas seleccionar un número aleatorio entre 1 y 100.

  • ¿Qué es la truco mágica conocida como 'The 37 Force'?

    -The 37 Force es una truco mágico profesional en el cual el mago logra que un espectador escoja el número 37 de manera看似 aparentemente aleatoria. La truco se basa en técnicas de forzado y sugerencias subliminales para influir en la elección del espectador sin que este sea consciente de ello.

  • ¿Cuál es la importancia del número 37 en matemáticas?

    -El número 37 es un primo y tiene varias propiedades matemáticas interesantes. Es el segundo primo en términos de ser el factor primo más pequeño de la mitad de los números enteros (la mitad de los números enteros tienen 2 como su menor factor primo). Además, 37 es el número mediano en términos de ser el segundo factor primo de todos los números enteros, lo que significa que la mitad de los números tienen un segundo factor primo de 37 o menos.

  • ¿Qué es el problema de la secretaria y cómo se relaciona con el número 37?

    -El problema de la secretaria, también conocido como el problema del matrimonio, es un problema matemático que trata de determinar la mejor estrategia para seleccionar la mejor opción de un conjunto de opciones desconocidas. La solución óptima a este problema sugiere que se debe rechazar un 37% de las opciones para obtener una sensación de lo que está disponible y luego seleccionar la primera opción que sea mejor que las anteriores, dando un 37% de probabilidad de éxito.

  • ¿Cómo se puede aplicar el 37% rule en la vida real?

    -El 37% rule se puede aplicar en situaciones donde se debe tomar una decisión final y no se conoce el número total de opciones disponibles. Por ejemplo, al buscar un empleo, alquilar un apartamento o decidir sobre una pareja de por vida, se puede aplicar la regla explorando y rechazando el 37% inicial de opciones para luego seleccionar la primera opción superior a las anteriores, mejorando las posibilidades de tomar una decisión óptima.

  • ¿Qué es la colección de 37 y quién la ha estado recopilando?

    -La colección de 37 es una serie de instancias en las que el número 37 aparece en diferentes contextos de la vida cotidiana. Una persona ha estado recopilando estos ejemplos a lo largo de su vida, desde la década de 1980, y ha creado un sitio web dedicado a esta colección. Estos ejemplos pueden incluir objetos con el número 37, eventos que ocurren en el número 37 de días o cualquier otra coincidencia con el número.

  • ¿Qué sugiere la frecuencia del número 37 en la vida cotidiana?

    -La frecuencia del número 37 en la vida cotidiana sugiere que hay un patrón subconsciente o una predisposición en la percepción humana del número como algo natural y aleatorio. Esta predisposición puede estar relacionada con la importancia del número en términos matemáticos y su papel en la toma de decisiones óptimas, lo que hace que las personas se sientan atraídas hacia él de manera inconsciente.

  • ¿Qué es Brilliant y cómo puede ayudar a mejorar la intuición y las habilidades de resolución de problemas?

    -Brilliant es una plataforma de aprendizaje en línea que ofrece cursos interactivos en matemáticas, ciencia de datos, programación y tecnología. Al aprender a través de la práctica y aplicar los conceptos a situaciones del mundo real, los estudiantes pueden mejorar sus habilidades de pensamiento crítico y problem-solving, así como su intuición para ver patrones y hallar verdades ocultas en la información.

  • ¿Cómo se puede acceder a los recursos de Brilliant y cuáles son los beneficios de ser usuario premium?

    -Para acceder a los recursos de Brilliant, se puede visitar su sitio web y registrarse para obtener acceso a sus cursos interactivos. Los usuarios premium tienen acceso a una amplia variedad de lecciones, descuentos en la suscripción anual y la oportunidad de aprender desde cualquier lugar a través de su teléfono. Además, los nuevos usuarios pueden probar la suscripción premium con un descuento del 20% durante 30 días.

Outlines

00:00

🎲 La elección de números aleatorios y la fascinante tendencia del 37

En este párrafo, se explora la tendencia de las personas a elegir números aleatorios dentro del rango de 1 a 100, destacando la curiosa predisposición hacia el número 37. A través de una serie de entrevistas y experimentos, se muestra que, incluso cuando se pide que elijan un número completamente aleatorio, muchos sujetos tienden a seleccionar el 37. Además, se menciona el fenómeno blue-seven关联于 la percepción de los colores y números, y se introduce la idea de que el número 37 podría ser equivalente a este en el ámbito de la aleatoriedad. Se sugiere que esta inclinación podría ser resultado de factores psicológicos y matemáticos, incluyendo la rareza de los números primos y su aparente ausencia de una fórmula predictiva.

05:00

🔢 El origen y las características especiales del número 37

Este párrafo profundiza en la relevancia y las características del número 37, presentando argumentos sobre por qué este número es percibido como más aleatorio que otros. Se discute la preferencia humana por los números primos y la escasez de estos en nuestra vida cotidiana, así como la dificultad inherente a la predicción de la secuencia de números primos. Además, se mencionan diversas propiedades matemáticas de 37, como su posición como un primo irregular, un primo cubano, un primo afortunado y otros. Finalmente, se relata la historia personal de un individuo cuya fascinación con el 37 comenzó en la infancia y ha perdurado a lo largo de la vida.

10:00

📈 El problema del secretario y la estrategia 37% para tomar decisiones

Este segmento introduce el problema matemático conocido como el problema del secretario o el problema del matrimonio, que se refiere a la estrategia óptima para elegir entre una serie de opciones desconocidas. Se explica que la mejor estrategia consiste en rechazar un 37% de las opciones al principio para obtener una idea de la gama disponible y luego seleccionar la primera opción superior a las anteriores. Se sugiere que este enfoque, que involucra un equilibrio entre exploración y explotación, puede ser aplicado no solo a la elección de empleos o parejas, sino también a decisiones más amplias en la vida. Además, se menciona que la probabilidad de éxito utilizando esta técnica es del 37%, subrayando la importancia y la influencia del número 37 en nuestra toma de decisiones.

15:02

🌐 La presencia omnipresente del 37 en la vida cotidiana y la cultura popular

Este párrafo destaca la inesperada y extensa presencia del número 37 en diversos aspectos de la vida diaria y la cultura popular. A través de anécdotas y ejemplos, se muestra cómo el 37 se manifiesta en momentos clave y triviales, desde la elección de un número de lotería a la cantidad de pasas en un viaje. Además, se relata la historia de un individuo que ha dedicado décadas a recopilar instancias de la aparición del 37, demostrando la fascinación y la conexión que algunos tienen con este número. Finalmente, se sugiere que nuestra tendencia a seleccionar el 37 podría ser un reflejo de patrones inconscientes y universales en nuestra percepción y toma de decisiones.

20:02

💡 La importancia del número 37 y la intuición humana en la resolución de problemas

En el último párrafo, se reflexiona sobre la fascinante relación entre el número 37 y la intuición humana, sugiriendo que nuestra predisposición a elegir el 37 como número aleatorio podría ser una manifestación de patrones mentales más amplios. Se argumenta que el 37 sirve como un ejemplo de cómo la intuición puede guiar nuestras decisiones y percepciones, y se sugiere que hay herramientas y recursos disponibles para cultivar y mejorar estas habilidades. Además, se hace una mención de un patrocinador que ofrece recursos educativos para desarrollar la intuición y las habilidades de resolución de problemas, animando al espectador a explorar y mejorar estas capacidades.

Mindmap

Keywords

💡Aleatoriedad

La aleatoriedad se refiere a la selección de opciones sin seguir un patrón o sistema. En el video, se destaca que, a pesar de pensar que estamos eligiendo números al azar, hay ciertos números que la gente tiende a elegir con frecuencia, como el número 37. Este patrón va en contra de la noción de que las personas pueden ser verdaderamente aleatorias en sus decisiones.

💡Fenómeno blue-seven

El fenómeno blue-seven es un término utilizado por psicólogos para describir el tendencia de las personas a elegir el color azul y el número 7 de manera predecible, a pesar de creer que están eligiendo al azar. En el contexto del video, se sugiere que el número 37 podría ser el equivalente al fenómeno blue-seven pero para números entre 1 y 100.

💡Número 37

El número 37 es un número que se destaca en el video por ser frecuentemente elegido por las personas como un número aleatorio. Se sugiere que este número se vuelve significativo debido a su aparente predisposición para ser elegido, y se explora su relevancia en diversas áreas, desde matemáticas y ciencia hasta la psicología y la cultura popular.

💡Teoría de los números primos

La teoría de los números primos se refiere al estudio de números que no se pueden dividir en números enteros más pequeños que uno y el propio número. En el video, se sugiere que los números primos, como el 37, se consideran más 'aleatorios' que otros números debido a su distribución irregular y la falta de una fórmula para predecirlos.

💡Problema del secretario

El problema del secretario, también conocido como el problema de la esposa, es un problema matemático que trata de determinar la mejor estrategia para elegir la mejor opción de un conjunto de opciones desconocido. En el video, se menciona que la solución optimal a este problema sugiere rechazar un 37% de las opciones al principio para luego elegir la primera opción mejor que las anteriores, dando un 37% de probabilidad de éxito.

💡Percepción de la随机性

La percepción de la随机性 se refiere a cómo las personas interpretan y entienden la noción de elección al azar. En el video, se sugiere que hay una tendencia en la percepción de la randomidad que hace que ciertos números, como el 37, parezcan más aleatorios a nuestros ojos, a pesar de que en realidad pueden no lo ser.

💡Teorema del número primo

El teorema del número primo es una afirmación matemática que establece que hay infinitos números primos. Aunque no se detalla directamente en el video, el teorema está relacionado con el tema principal al explorar la naturaleza aleatoria y la distribución de números primos como el 37.

💡Múltiples de 10

Múltiples de 10 son números que pueden ser divididos exactamente por 10, como 10, 20, 30, etc. En el video, se sugiere que las personas tienden a considerar que los múltiplos de 10 no son tan aleatorios como otros números, lo que se refleja en las preferencias de los números elegidos.

💡Factores primos

Los factores primos de un número son los números primos que dividen ese número. En el video, se discute cómo los factores primos, especialmente el segundo factor primo, influyen en la percepción de aleatoriedad y la elección de números como el 37.

💡Cultura popular

La cultura popular hace referencia a los elementos de expresiones culturales ampliamente conocidos y aceptados por la sociedad en general. En el contexto del video, se menciona que el número 37 ha aparecido en diversas formas en la cultura popular, desde libros de niños hasta trucos de magia y meme en internet.

💡Intuición

La intuición es la habilidad de comprender o saber algo sin necesidad de utilizar el razonamiento lógico o la lógica concreta. En el video, se sugiere que nuestra intuición puede influir en nuestra percepción de la aleatoriedad y en la elección de números 'aleatorios' como el 37.

💡Brilliant

Brilliant es una plataforma de aprendizaje en línea que se enfoca en el desarrollo de habilidades de pensamiento crítico y resolución de problemas a través de conceptos en matemáticas, ciencia de datos, programación y tecnología. En el video, Brilliant es mencionado como patrocinador y se presenta como una herramienta para superar la intuición y mejorar el razonamiento.

Highlights

People are often poor at selecting things randomly, with a tendency to choose specific numbers repeatedly.

The 'blue-seven phenomenon' refers to the common pattern of people selecting the color blue and the number 7 when asked to choose randomly.

The number 37 is often cited as the equivalent of the 'blue-seven phenomenon' for choosing a random number between 1 and 100.

A large-scale survey was conducted to test the theory that people often choose the number 37 at random, receiving 200,000 responses.

The survey results showed that people's idea of random numbers is not actually random, with certain numbers like 7, 73, 77, and 37 standing out.

Multiples of 10 were found to be less regarded as random, while primes like 37 and 73 were more commonly chosen.

The number 37 has unique mathematical properties, including being a prime number and having a high occurrence as a second prime factor.

37 is also significant in the context of the 'secretary problem' or 'marriage problem', where it is suggested that one should explore and reject 37% of options before making a decision.

The 37% rule can be applied not only to numbers but also to time, providing a strategy for making optimal decisions in various scenarios.

The number 37 appears in various aspects of life, from product measurements to historical coincidences, suggesting a subconscious attraction or recognition of its significance.

One individual has built a website dedicated to collecting instances of the number 37 from around the world, highlighting its prevalence.

The video explores the cognitive and mathematical reasons why 37 might be considered a 'random' number by many people.

The number 37 has been associated with various interesting and fun facts, sparking curiosity and fascination among people.

The video suggests that the number 37 might be an intuitive choice for humans due to its mathematical properties and its role in decision-making strategies.

The concept of randomness and how people perceive it is challenged by the consistent patterns observed in the selection of the number 37.

The video concludes that the number 37 might be more than just a number, but a reflection of human intuition and cognitive patterns.

Transcripts

play00:00

- Let me show you something unbelievable.

play00:02

Name a random number between 1 and 100.

play00:05

- 61.

play00:06

- Okay, that's pretty random.

play00:07

- [Emily] Just name a random number from 1 to 100, random.

play00:09

- 43. - 43, thank you so much.

play00:11

- 56. - 7.

play00:13

- I want the most random number between 1 and 100,

play00:16

like totally random.

play00:17

- 11.

play00:18

- 37.

play00:19

- [Interviewee] 79. - 79, thank you so much.

play00:21

- 91. - 7.

play00:23

- 3. - 37.

play00:24

- [Derek] 37. - 37, yeah.

play00:25

- [Derek] Why 37?

play00:26

- I dunno, it's the first number that came to my mind.

play00:29

- 44. - 27.

play00:30

- 37. - 72.

play00:32

- 4. - 13.

play00:33

- 7. - 37.

play00:34

- [Emily] Really?

play00:35

(Derek speaking in foreign language)

play00:39

- 13. - 7.

play00:40

- 37. - 37?

play00:41

- 73. - 37.

play00:43

- 35. - 37.

play00:44

- [Emily] 37, no way!

play00:46

- 43. - 2.

play00:47

- 37.

play00:48

(Derek gasping)

play00:49

- I knew you were gonna do it.

play00:51

He just "37-ed" and walked away.

play00:53

- Between 1 and 100.

play00:54

- Ah, no thanks. - [Emily] Okay.

play00:56

- 37.

play00:57

- [Emily] Oh, perfect. Thank you so much.

play00:58

- 83. - 37.

play01:00

- 37.

play01:01

- 87. - 55.

play01:03

- 37. - 37.

play01:04

(Emily gasping)

play01:05

Can I shake your hand?

play01:07

- [Derek] I love the thought you're putting into this.

play01:08

- 37? - No, you are kidding me!

play01:11

Are you real? - Yeah why?

play01:13

- Did we ask you this already? - No.

play01:15

- Random number between 1 to 100.

play01:17

- 37. - 37. Oh, my gosh, yes.

play01:20

- [Derek] Name a random number between 1 and 100.

play01:22

- 37. - Are you kidding me?

play01:26

Why?

play01:28

- It's a good number, I guess, any number.

play01:31

- [Derek] Where did that come from?

play01:32

- Imagination, I suppose.

play01:35

- So, what's going on?

play01:37

Well, people are actually really bad

play01:39

at selecting things randomly.

play01:41

In fact, when asked to pick a color and a number,

play01:43

people reliably select blue and 7 the most

play01:47

across dozens of different cultures.

play01:49

Psychologists have a name for this pattern.

play01:51

The blue-seven phenomenon.

play01:54

And when picking a random number between 1 and 100,

play01:57

it has long been suggested

play01:58

that the equivalent of the blue-seven phenomenon

play02:01

is the number 37.

play02:03

My producer, Emily, and I spoke to hundreds of people

play02:05

to test this theory.

play02:07

The most common answer was 7,

play02:09

but maybe that's because people just expected

play02:11

that we'd ask them for numbers between 1 and 10.

play02:14

The most common two-digit number really was 37,

play02:18

much to our surprise.

play02:19

(Derek and Emily gasping)

play02:25

So we decided to embark on the biggest investigation ever

play02:29

on the number 37.

play02:31

And it took us to some unexpected places.

play02:34

- I think 37 is a fascinating number.

play02:36

It's just really interesting because it turns up so much.

play02:39

How many objects are there here in the room with us

play02:42

that have a 37 on them?

play02:43

I'm sure there's more than 1,000 here.

play02:46

I built the 37 Website in 1994.

play02:49

I started getting email from strangers, it's everywhere.

play02:51

I'm trying to collect them all.

play02:53

We're tireless.

play02:54

The tireless cabal of 37 people, yeah.

play02:58

- Apparently, people choose 37 so reliably

play03:01

that there's even a widespread professional magic trick

play03:04

that relies entirely on getting an audience member

play03:06

to just pick 37 out of thin air.

play03:09

It's called The 37 Force.

play03:12

- I'm gonna ask you to think of a number in a moment, okay?

play03:15

It's a two-digit number, less than 50.

play03:18

Both numbers are odd, but different.

play03:20

You could have 19, 17, or 15, but not 11.

play03:22

Because you see both numbers are the same, 1 and 1 next to one another.

play03:26

You ready?

play03:27

One, two, and three.

play03:29

What number did you think of?

play03:31

- [Audience] 37. - 37.

play03:32

Fascinating.

play03:35

In the famous Stanford MIT Jargon File,

play03:38

the origin of hacker slang,

play03:40

37 is given as the random number of choice

play03:43

for computer programmers.

play03:44

“When groups of people are polled

play03:46

to pick a random number between 1 and 100,

play03:48

the most commonly chosen number is 37."

play03:52

(graphic buzzing)

play03:52

The thing is, no formal polls on this actually exist.

play03:56

The best we found was a Reddit poll of 1,380 people

play04:00

from four years ago,

play04:02

and the most popular number was...

play04:04

69.

play04:06

But after that, the winning number was 37.

play04:10

But we can do better than a sample size

play04:11

of just 1,000 people.

play04:13

So we conducted the largest random number survey ever.

play04:17

In a community post 3 weeks ago,

play04:18

we asked people to pick a random number between 1 and 100.

play04:22

We received 200,000 responses.

play04:26

Here are the results as they came in.

play04:30

It's fascinating to watch

play04:31

how consistent these supposedly random numbers are,

play04:35

from 10,000, to 100,000,

play04:39

all the way up to 200,000 respondents.

play04:43

The distribution barely changes,

play04:45

suggesting that people from all around the world

play04:49

think about random numbers in a particular way,

play04:52

and it is decidedly not random.

play04:56

Ignoring the extremes of the scale

play04:58

because people were primed

play05:00

by the numbers 1 and 100 in the question itself,

play05:02

and ignoring 42 and 69 because they're not random,

play05:06

there are a few numbers that stand out,

play05:09

which we seem to regard as more random than the rest.

play05:13

7,

play05:13

73,

play05:15

77,

play05:16

and 37.

play05:17

(pensive music)

play05:20

Then we asked people to pick the number

play05:21

they thought the fewest others would pick.

play05:24

The goal was to get rid of favorite or lucky numbers

play05:26

and give truly random selections.

play05:29

And here, the results were even clearer.

play05:32

Again, ignoring the very extremes and 50 in the middle,

play05:35

the most selected numbers were, far and away, 73 and 37,

play05:40

which were nearly tied.

play05:43

The actual least-picked number in the first question was 90,

play05:47

followed by 30, 40, 70, 80, and 60.

play05:50

Multiples of 10 apparently don't seem that random.

play05:54

The most picked overall numbers ignoring the outliers

play05:57

were 73 and 37.

play05:59

(pensive music)

play06:01

Ironically, all this evidence points to 37

play06:04

and its inversion, 73, as not being random at all.

play06:08

So why does everyone pick them?

play06:10

Well, one argument

play06:11

is that this is just how people perceive randomness.

play06:14

37, does that feel random to you?

play06:17

- Yeah. Yeah, it does.

play06:19

- [Derek] Yeah, 50 wouldn't be random?

play06:21

- No. - [Derek] No.

play06:21

- It would be too contrived.

play06:23

- [Derek] Yeah. - Yeah, it's too central

play06:26

- I think people think that even numbers

play06:28

are less random than odd numbers.

play06:30

- 5 feels not random, 9 and 1 feel too extreme,

play06:33

so people tend towards 3 and 7.

play06:35

- This is backed up by the fact

play06:36

that every one of the top numbers in our survey

play06:39

consisted of 3s and 7s.

play06:42

In fact, 3 and 7 were the most selected digits

play06:45

on both questions.

play06:49

But there's also a mathematical case

play06:51

for humanity's number of choice

play06:53

because it's not just odd numbers,

play06:54

but specifically primes,

play06:56

which feel like the most random numbers.

play06:59

Notice how we ignore odds ending in 5s

play07:02

or how something like 39

play07:03

still feels a little less random than 37?

play07:08

Primes feel random for at least two reasons.

play07:11

First, they don't appear as much in our lives.

play07:14

I mean, pixel counts, fruit boxes, square footage.

play07:17

We live in a composite world with multiple dimensions

play07:20

that multiply together,

play07:22

so we just don't see primes much past the single digits.

play07:26

Second, we don't have a formula for primes.

play07:29

If you have a prime number

play07:30

and you want to find the next one,

play07:31

you have no choice but to check every number

play07:34

until you find a prime.

play07:35

The closest thing we have to a formula

play07:37

is the prime number theorem,

play07:39

which gives the approximation

play07:40

that the nth prime number occurs around n

play07:43

times natural log of n.

play07:45

For example, the 1,000th prime number

play07:47

should be around 6,908.

play07:50

And it's close, but certainly not exact.

play07:54

So primes essentially occur at random,

play07:59

but of all the primes, 37 has reason to stand out.

play08:02

(pensive music)

play08:04

If we were to find the prime factors of every number,

play08:08

we would see that 2 is the smallest prime factor

play08:11

for exactly 1/2 of them,

play08:13

all of the even numbers.

play08:14

And 3 is the smallest prime factor

play08:17

for 1/6 of all numbers,

play08:18

anything that's divisible by 3 but not by 2 and so on.

play08:22

As we pick larger and larger primes,

play08:25

they form the smallest prime factor

play08:26

for fewer and fewer integers.

play08:29

But, what if we track the second smallest prime factor

play08:32

of each number?

play08:34

Well, first, we have 3,

play08:35

which is the second prime factor of a number.

play08:37

Only when the number is divisible by both 2 and 3

play08:41

or divisible by 6.

play08:42

So 1/6 of all numbers have a second prime factor of 3.

play08:47

And as we keep going,

play08:48

which number will end up at the balancing point?

play08:51

This is the median second prime factor of all numbers,

play08:55

all numbers from 1 all the way up to a googol

play08:58

and off to infinity.

play09:00

Would you believe that that number is 37?

play09:03

(pensive music)

play09:05

Let's take a look at 5.

play09:06

5 is the second prime factor

play09:08

only when a number is divisible by 5 and 3,

play09:11

but not 2.

play09:12

Or 5 and 2, but not 3.

play09:15

In the first case, a number divisible by 5 and 3

play09:18

means it's divisible by 15,

play09:19

so that's 1/15 of all numbers.

play09:21

But it also can't be divisible by 2.

play09:24

So 1/2 of 1/15 is 1/30 of all numbers.

play09:28

In the second case,

play09:29

a number divisible by 5 and 2

play09:30

means it's divisible by 10,

play09:32

but it cannot be divisible by 3.

play09:35

So we're left with 1/10 times 2/3

play09:37

equals 1/15 of all numbers.

play09:40

Adding up these two cases,

play09:41

we get that 1/10 of all numbers

play09:43

have 5 as their second prime factor.

play09:46

And we can repeat this for the next prime, 7.

play09:49

Just take each of these cases

play09:51

and add them up to get that 1/15 of all integers

play09:54

have a second prime factor of 7.

play09:58

And so on.

play09:59

Keeping a running total,

play10:00

we quickly approach a balancing point

play10:02

for the second prime factor across all integers.

play10:05

And then we reach it.

play10:08

So the median second prime factor of all numbers is 37.

play10:13

Half of numbers have a second prime factor of 37 or less.

play10:20

There are other remarkable qualities about 37 as a prime.

play10:23

It's an irregular prime, a Cuban prime, a lucky prime,

play10:27

a sexy prime, a permutable prime, a Padovan prime.

play10:30

And at this point,

play10:31

mathematicians might just be making up types of primes.

play10:34

- 37's identity as a prime number is so strong

play10:37

that the same day I first learned the number 37,

play10:40

I learned it was prime.

play10:42

This was one of my first books as a toddler.

play10:44

It teaches you every number from 1 to 100

play10:46

with a short story or fun fact for each.

play10:49

So for 26, that's how many letters in the alphabet.

play10:51

Or for 30, they give the days of September.

play10:54

Or for 52, that's how many cards are in a deck.

play10:57

Except 37.

play10:58

(pages rustling) (jaunty music)

play11:00

It's a prime number.

play11:02

Nothing goes into it.

play11:03

Someday, you'll understand.

play11:06

I did not like that.

play11:08

I understood every other number,

play11:09

so I also wanted to understand 37.

play11:11

So, that number has nagged me ever since,

play11:13

and now this video is being made some 20 years later.

play11:17

- [Derek] Not convinced yet?

play11:20

- If you take a number that is a multiple of 37 already,

play11:23

like 1, 3, 6, 9, that's 37 squared,

play11:26

and then you reverse it,

play11:28

and then you stick a 0 in between every digit,

play11:32

then that number is a multiple of 37.

play11:34

And I literally spent the next month on the bus

play11:38

trying to prove that fact, which I finally did.

play11:40

Just rattle off a six-digit number.

play11:42

Tell me any six-digit number.

play11:44

- 413,625.

play11:48

- And it's not divisible by 37.

play11:50

So how did I figure that out?

play11:52

There's a trick for that.

play11:54

- Is this your like party trick that you can bring out?

play11:57

- Surprisingly,

play11:57

it doesn't impress as many people as you would think.

play12:00

I think it should impress everybody.

play12:03

- But there's also a practical reason

play12:04

37 is an important number for humanity.

play12:07

Say you are faced with a choice

play12:09

that is both immediate and final,

play12:12

like whether to rent the apartment you've just toured

play12:14

or whether to accept a job offer you received.

play12:17

Or it can be as small

play12:18

as whether to stop the next gas station on a road trip.

play12:21

These are all problems

play12:22

where you can't assess all the options at once

play12:24

and then decide.

play12:26

With each option you encounter,

play12:28

you need to decide whether to accept it or reject it forever

play12:31

and see what comes next.

play12:33

In these scenarios,

play12:34

it feels impossible to make the best choice.

play12:37

If you select too early,

play12:39

you'll probably never even see the best option.

play12:41

But if you select too late,

play12:42

well, then you've probably rejected the best option already.

play12:46

So your best bet is somewhere in the middle.

play12:49

There, you know at least some information

play12:51

from the options you've seen,

play12:53

and you have some choice, to select or pass.

play12:56

But how do you know exactly when to decide?

play12:59

The optimal strategy looks like this.

play13:02

First, you need to see some options

play13:04

and reject them automatically

play13:06

just to learn what's out there.

play13:08

And then at a certain stopping point, S,

play13:10

you need to stop rejecting them

play13:12

and start evaluating whether an option

play13:14

is the best you've seen so far.

play13:17

If it is, then select it.

play13:19

But when should that stopping point be?

play13:22

We need to work out which stopping point

play13:24

maximizes our chances of picking the best option.

play13:28

We can calculate these chances.

play13:30

For each spot, find the probability

play13:32

that the best option is located there

play13:35

times the probability we get there from stopping point S.

play13:39

Then, add these probabilities up across every spot.

play13:43

Now, the chance of the best option being in any spot

play13:47

is just random.

play13:48

If there are N options in total, it's 1/N,

play13:52

but it's a little harder

play13:53

to find the chances of getting to each spot.

play13:56

Say the best option is in the next spot after S, S + 1.

play14:00

What are the chances we get there?

play14:02

Well, since this is the next spot over

play14:04

from the stopping point,

play14:06

we have 100% chance of getting there.

play14:08

So we are guaranteed to visit it and select it.

play14:12

But if the true best option is in spot S + 2,

play14:15

well, there's a small chance we'll miss it.

play14:17

If the best of all the previous options

play14:19

is sitting in spot S + 1,

play14:21

we would just pick that and stop looking

play14:23

before reaching S + 2.

play14:26

There's a one in S + 1 chance of this happening.

play14:29

So the chances we do get to spot S + 2

play14:32

to pick the true best option is 1 minus that,

play14:34

or S over S + 1.

play14:38

This same calculation continues up until the last spot N.

play14:42

We only get here

play14:43

if we've been passing on every option so far,

play14:46

which means that one of the first S options

play14:48

must have been the best

play14:49

of the total N - 1 options we've seen.

play14:53

In total, this gives us the expression 1/N

play14:56

times 1, + S over S + 1, plus S over S + 2, and so on,

play15:02

all the way up to S over N - 1.

play15:05

Factoring out the S,

play15:06

the sum inside the parentheses

play15:08

approximates the function 1/x going from S to N.

play15:12

(pensive music)

play15:12

Taking that integral, we get the natural log of N over S.

play15:17

So the probability we select the best option

play15:20

is S over N times the natural log of N over S.

play15:24

To maximize this probability,

play15:26

we can find the peak of this function

play15:28

by setting its derivative to 0,

play15:31

and this gives the natural log of S over N equals -1.

play15:35

So S over N equals 1 over e,

play15:38

or about 37%.

play15:41

So explore

play15:43

and reject 37% of options

play15:45

just to get a sense of what's out there,

play15:47

and then pick the first option to come along

play15:50

that's better than all of the ones you've seen so far.

play15:53

And your chances of success using this method

play15:56

are also 37%.

play15:59

(pensive music)

play16:02

This math question is known as the secretary problem

play16:05

or the marriage problem,

play16:06

as it also applies to hiring the best employees

play16:09

or even deciding on the best life partner.

play16:11

Now, it can be impractical to check 37% of the options

play16:15

because you don't always know

play16:16

how many candidates are out there,

play16:18

but the 37% rule also works for time.

play16:21

So if you want to get married, say, in 10 years,

play16:24

then spend the first 3.7 years seeing what's out there

play16:27

and then select the next person

play16:29

who's better than anyone you've seen.

play16:31

(pensive music)

play16:32

So 37 is actually important to our lives,

play16:35

and people seem to subconsciously recognize this.

play16:38

We gravitate towards the number everywhere.

play16:40

(pensive music)

play16:49

(film clicking)

play16:53

- 37 seconds.

play16:54

- 37 years.

play16:55

- 37 patties?

play16:57

- [Speaker 1] I was 37.

play16:58

- [Speaker 2] 37 cubic feet. - [Speaker 3] Take 37.

play17:01

- [Speaker 4] 37.

play17:02

- How many enemies do you have?

play17:03

- 37. - 37!

play17:04

- Yes! - [Speaker 5] 37%.

play17:05

- [Speaker 6] 37. - [Speaker 7] 37.

play17:07

- 37 hours.

play17:08

- Destroyed 37 restaurants.

play17:10

- 37. - I'm 37.

play17:12

- 37 interlocking bronze gears.

play17:14

Page 37.

play17:15

37 years old.

play17:16

37 prototypes.

play17:18

37%.

play17:19

(uplifting music)

play17:21

This collection of images, everything you're seeing on screen has been collected

play17:25

by one man over the course of his life.

play17:28

And you already know who it is.

play17:31

- It's just fun, right?

play17:32

The whole thing is just fun.

play17:34

How many objects are there here in the room with us

play17:37

that have a 37 on them?

play17:39

This is probably on the order of four digits, I'd say.

play17:44

There's probably not 10,000,

play17:46

but I'm sure there's more than 1,000 here.

play17:48

Nutri-Grain granola bars, 37 grams.

play17:51

It's a 37-inch yardstick.

play17:53

It's just some political cartoon about sports,

play17:55

but there's no reason

play17:56

that guy had to have Jersey number 37.

play17:58

A nail that I found somewhere that has 37 on the head.

play18:01

I don't even know what that means.

play18:02

One time, my mom gave me $37 for my birthday.

play18:06

They all have 37 in the serial number.

play18:09

- Was your 37th birthday like the greatest birthday ever?

play18:12

- I had a big party and I invited everybody I knew.

play18:15

The Texas state lottery was $37 million.

play18:18

So I had two different friends

play18:19

who both gave me 37 lottery tickets.

play18:22

I didn't win, I won 5 bucks.

play18:24

This is an article

play18:25

from when they found the 37th Mersenne prime.

play18:28

It's just clipping after clipping.

play18:29

How many hundreds of these do you want me to go through?

play18:32

I must have gotten that in Germany, but I don't know...

play18:34

But I don't remember what it was.

play18:35

Was it like a locker number?

play18:36

I wouldn't steal a locker number.

play18:37

I've never stolen for 37.

play18:39

(speaker 1 laughing)

play18:40

- Look at that.

play18:41

Stolen from the highway when I was on a road trip,

play18:43

- [Speaker 1] I heard you say, you never stole anything.

play18:45

- I have committed a crime. - [Speaker 1] Yes.

play18:48

- There was a bookstore on campus

play18:49

when I was an undergrad at KU,

play18:51

and there were 37 steps in that staircase.

play18:54

Useful facts, these are useful facts.

play18:57

- Do you feel like everyone gets 37 this much in their lives

play19:00

or do you feel like you're just attracting it?

play19:03

- That's a good question.

play19:05

You know, the reason I started

play19:06

was because it seemed like it turned up a lot.

play19:08

I started back in the '80s.

play19:10

There was a comedy routine by Charles Fleischer,

play19:12

and he went through this sort of litany of coincidences

play19:16

about the number 37,

play19:17

like there are 37 holes in the speaker part of a telephone.

play19:20

(jaunty music)

play19:21

Shakespeare wrote 37 plays.

play19:23

There's 37 movements in Beethoven's Nine Symphonies.

play19:26

There are all these amazing coincidences

play19:27

that he rattled off.

play19:28

I was amazed and I've been collecting them since like 1981.

play19:33

Yeah, so 43?

play19:35

43 years, probably.

play19:38

(jaunty music)

play19:39

I built the 37 Website for the first time in 1994.

play19:43

I don't know how the website got out there,

play19:45

but somehow it got out there.

play19:47

I started getting email from strangers.

play19:49

I've got...

play19:50

Oh, maybe a half a dozen people from around the world,

play19:53

who, every week or month,

play19:55

will post their latest batch of 37s

play19:58

that they've seen out and about.

play19:59

- And they've been doing this for how long?

play20:02

- 18 years.

play20:03

- Wow. - We're tireless.

play20:05

The tireless cabal of 37 people, yeah.

play20:08

- Do you have anything to say to anyone who might be like,

play20:11

"37, that's just a base-10 representation of that number."

play20:15

- I am also interested the number 37

play20:18

in all of its various other forms:

play20:20

Roman numerals;

play20:21

binary numbers 100101, by the way;

play20:25

numbers in any other base.

play20:27

Yeah, 25 in hexadecimal.

play20:30

45 in octal.

play20:32

- And do you think you're gonna keep looking for a 37

play20:34

and collecting 37 for your whole life?

play20:36

- Yeah, yeah, I can't see any reason to stop.

play20:39

Yeah, for sure.

play20:42

- So maybe there's even something innately

play20:44

universally special about this number.

play20:47

(pensive music)

play21:01

We can argue special coincidences for many numbers,

play21:04

but we need to finally address the elephant in the room.

play21:08

The sheer amount of brain power

play21:10

37 secretly takes up in our collective minds.

play21:13

It's humanity's go-to random number,

play21:15

one of our most prominent prime numbers,

play21:17

and most of all, our ideal number for making decisions.

play21:21

Maybe that's why we're inclined to it naturally.

play21:24

It feels right to us as where to settle and what to pick.

play21:27

Though with this video,

play21:28

we may have ruined randomness even further.

play21:31

I mean, the next time anyone asks people

play21:32

to pick a random number between 1 and 100,

play21:35

more people than ever might be saying, "37."

play21:37

(pensive music)

play21:39

- It's been the story of my life

play21:40

that I intend to take everything that I have here

play21:44

and turn them all into individual facts on that website.

play21:47

But the website's been there untouched for 27 years

play21:50

and it hasn't happened.

play21:51

It doesn't look like it's ever gonna happen.

play21:53

- Maybe on the 37th anniversary, we can get it all done.

play21:57

- That's a good idea.

play21:58

That's a good idea.

play21:59

Because I have time to do it between now and then,

play22:02

and that would be...

play22:03

That's a great idea.

play22:04

- Once our video comes out,

play22:06

do you want people to write you

play22:07

with any instances they see of 37?

play22:09

You might get swamped, for a little bit.

play22:11

- 37 is out there, it's everywhere.

play22:14

I'm trying to collect them all.

play22:15

Bring it.

play22:16

Yes, bring it.

play22:18

(graphic beeping)

play22:22

- Our intuition is one of the most powerful tools we have,

play22:25

and the number 37 is just one example

play22:27

of the unseen patterns in our minds.

play22:30

Luckily, there's a way to supercharge your intuition,

play22:33

giving you the skills to see beyond the everyday

play22:35

and uncover hidden truths about our world.

play22:38

And you can get started right now for free

play22:40

with this video sponsor, Brilliant.

play22:43

Brilliant gets you hands-on with concepts,

play22:45

in everything from math and data science

play22:48

to programming and technology,

play22:50

to help sharpen your thinking

play22:51

and build your problem-solving skills.

play22:53

On Brilliant, you'll learn by doing.

play22:55

So even abstract concepts, just click.

play22:58

Plus, you'll be able to take what you learn

play23:00

and apply it to real-world situations.

play23:02

With every lesson,

play23:03

you'll also be building critical thinking skills,

play23:05

training your brain to use your intuition

play23:07

to draw powerful insights.

play23:09

There's so much to learn on Brilliant.

play23:12

They have thousands of interactive lessons

play23:14

to feed your curiosity.

play23:15

And because each one is bite-sized,

play23:17

it's easy to learn something new,

play23:19

even if you only have a few minutes to spare.

play23:22

The best part is you can learn from anywhere

play23:24

right on your phone.

play23:25

So wherever you are,

play23:27

you can be building real knowledge

play23:29

and honing your intuition.

play23:30

To try everything Brilliant has to offer for free

play23:33

for 30 days,

play23:33

visit brilliant.org/veritasium.

play23:36

Scan this QR code

play23:38

or click on the link in the description,

play23:40

and you'll get 20% off

play23:41

Brilliant's annual premium subscription.

play23:43

So I wanna thank Brilliant

play23:45

for sponsoring this part of the video,

play23:46

and I wanna thank you for watching.

Rate This

5.0 / 5 (0 votes)

Related Tags
AleatoriedadPsicologíaNúmeros PrimosToma de DecisionesCultura PopularMatemáticas AplicadasCuriosidades37Brilliant
Do you need a summary in English?