Rob Knight: How our microbes make us who we are

TED
23 Feb 201517:28

Summary

TLDRThis script delves into the crucial yet often overlooked role of microbes in our bodies, particularly in the gut, and their impact on our health and identity. It explores how these microorganisms influence our susceptibility to diseases, drug reactions, and even behaviors. The speaker discusses the Human Microbiome Project, which aims to map the DNA of these microbes, and shares insights from studies like American Gut. The script also touches on the potential of microbial therapies to treat conditions like obesity and malnutrition, highlighting the revolutionary possibilities of microbial science in medicine.

Takeaways

  • 🧠 The ancient Egyptians preserved organs for the afterlife but disregarded the brain, highlighting our historical lack of understanding of the brain's importance.
  • 🌐 There is an 'organ' in our bodies as significant as the brain but is often overlooked: our gut microbes, which are crucial to our health and identity.
  • 🦟 Microbes on our skin can affect our attractiveness to mosquitoes, demonstrating the influence of microbes on everyday experiences.
  • πŸ’Š The presence of certain microbes in our gut can determine the effectiveness and toxicity of medications, including painkillers and heart drugs.
  • 🧬 The Human Microbiome Project, funded by NIH, has mapped the DNA sequences of microbes across the human body, revealing their vast diversity.
  • 🌈 The microbial communities vary significantly across different body sites, with each site hosting a unique set of microbes.
  • 🌱 The method of birth significantly influences a baby's initial microbial community, with vaginal birth and C-section leading to distinct microbial profiles.
  • πŸ”¬ Microbial imbalances have been linked to various diseases, including inflammatory bowel disease, heart disease, colon cancer, and obesity.
  • 🧬 The microbial genes within us outnumber human genes, suggesting that our microbial makeup plays a significant role in our biology.
  • 🌎 The American Gut project allows individuals to participate in microbiome research, contributing to the understanding of how microbes affect health.

Q & A

  • What mistake did the ancient Egyptians make in preserving body parts for the afterlife?

    -The ancient Egyptians carefully preserved organs like the stomach, lungs, and liver but disregarded the brain, mushing it up and draining it through the nose, believing it was unimportant.

  • What is the 'neglected organ' in our bodies that the speaker refers to?

    -The speaker refers to the gut and its microbes as the 'neglected organ,' emphasizing that, like the brain, it plays a crucial role in our health and identity.

  • How do microbes affect the likelihood of being bitten by mosquitos?

    -Microbes on our skin produce different chemicals, which mosquitos detect, making some people more attractive to mosquitos than others.

  • What is one way microbes influence our medical treatment?

    -Microbes in our gut can determine whether certain painkillers are toxic to our liver and whether specific drugs will work for heart conditions.

  • How do different regions of the human body compare in terms of microbial diversity?

    -Different body regions, such as the mouth, skin, vagina, and gut, host vastly different microbial communities, sometimes more distinct than ecosystems separated by hundreds of miles.

  • How genetically similar are human gut microbes compared to human DNA between individuals?

    -While human DNA is 99.99% similar between individuals, gut microbes can be only 10% similar, showing far greater variation.

  • How do the microbes in our gut outnumber human cells and genes?

    -We have approximately 10 trillion human cells but up to 100 trillion microbial cells. Additionally, our microbial genes can number between two million and 20 million, vastly outnumbering our 20,000 human genes.

  • How does a person's microbial identity remain stable over time, even with close contact with others?

    -Despite living closely with others, like family members, microbial communities in adults remain relatively stable and maintain their unique identity over time.

  • What significant impact does a baby’s mode of birth have on their initial microbial communities?

    -Babies born through vaginal delivery inherit microbes resembling the vaginal community, while C-section babies acquire skin-like microbes, potentially influencing later health outcomes like asthma, allergies, and obesity.

  • How can antibiotics affect the development of a child's gut microbiome?

    -Antibiotics, especially early in life, can cause significant disruptions in microbial development, potentially leading to long-term health effects, such as an increased likelihood of obesity.

  • How have fecal transplants been used to treat severe cases of C. diff infections?

    -In patients with C. diff infections, transplanting healthy donor stool dramatically shifts their gut microbiome, clearing symptoms like diarrhea within a day and restoring health.

  • Why are microbes increasingly being linked to various diseases, and what does the future hold for microbial research?

    -Microbes have been connected to diseases like inflammatory bowel disease, heart disease, obesity, and even autism. Future research aims to map and manipulate the microbiome to develop personalized treatments for a range of conditions.

Outlines

00:00

🧠 The Underappreciated Role of Gut Microbes

The speaker humorously contrasts the ancient Egyptians' meticulous preservation of organs like the stomach and lungs with their disregard for the brain, setting the stage for a discussion on a modern-day 'neglected organ': the gut and its microbes. Despite the brain's weight and importance, the speaker suggests that our understanding of the gut's microbial community, which can weigh as much and be equally crucial to our identity, is surprisingly limited. The speaker introduces the concept that these microbes are critical to various aspects of human health and behavior, including susceptibility to mosquito bites and responses to medications, and that recent scientific advances are just beginning to uncover their significance.

05:01

🌐 The Human Microbiome Project: Mapping Our Microbial Selves

This section delves into the Human Microbiome Project, a $173 million endeavor funded by NIH, which aimed to map the DNA sequences of the microbes inhabiting the human body. The speaker explains that while microbes are difficult to differentiate visually, their DNA sequences provide a means to identify and understand their roles. The project's findings revealed a vast diversity of microbial communities across different body sites, each with a unique microbial makeup. The speaker's lab developed computational techniques to transform vast amounts of microbial sequence data into a more comprehensible map, highlighting the stark differences in microbial communities between various body sites and even between individuals.

10:02

πŸ‘Ά The Impact of Birth and Early Life on Microbiome Development

The speaker explores how the mode of birth significantly influences an infant's initial microbial community, with vaginally born babies inheriting microbes similar to the vaginal community and those born via C-section resembling skin microbes. This early microbial colonization may have long-term health implications, such as increased risks of asthma, allergies, and obesity associated with C-section births. The speaker shares a personal anecdote of ensuring their C-section born daughter received the beneficial vaginal microbes, highlighting the potential importance of early microbial exposure. The narrative progresses to illustrate how an infant's gut microbiome evolves over the first two and a half years, with a significant shift caused by antibiotic treatment for an ear infection, underscoring the impact of early life interventions on long-term microbial health.

15:04

🌱 The Future of Microbiome Research and Personalized Medicine

In the final paragraph, the speaker discusses the profound implications of microbiome research for understanding and treating various diseases, from inflammatory bowel disease to obesity and potentially even neurodevelopmental disorders like autism and depression. They introduce the 'American Gut' project, a crowd-funded initiative that allows individuals to contribute their microbial samples for research, democratizing access to microbiome data. The speaker also touches on the potential of fecal microbiota transplantation as a therapy, demonstrating its effectiveness in treating C. diff. infections. The narrative concludes with a vision for developing a 'microbial GPS' to guide personalized healthcare interventions based on an individual's unique microbial landscape.

Mindmap

Keywords

πŸ’‘Microbiome

The microbiome refers to the collective genomes of the microorganisms living in symbiosis with the human body. In the video, it is highlighted as a critical yet often overlooked aspect of human health, with microbes playing a significant role in digestion, immune system education, disease resistance, and potentially even behavior. The script discusses how different parts of the body host unique microbial communities, and how these communities can vary greatly between individuals.

πŸ’‘Gut Microbes

Gut microbes are the microorganisms that reside in the human gastrointestinal tract. The video emphasizes their importance in health and disease, noting that the gut microbiome can influence the effectiveness of certain medications and contribute to conditions like obesity. It also touches on how gut microbes differ significantly between individuals, which can affect their susceptibility to diseases and their responses to treatments.

πŸ’‘Human Microbiome Project

The Human Microbiome Project is a research initiative aimed at identifying and cataloging the microorganisms found in the human body. The script describes this project as a way to map out the DNA sequences of these microbes, which has led to a better understanding of their roles in health and disease. The project's findings are visualized in the video through a microbial map that shows the diversity of microbial communities across different body sites.

πŸ’‘Microbial Diversity

Microbial diversity refers to the variety of microorganisms present in a particular environment, in this case, the human body. The video script uses the analogy of different landscapes to illustrate how microbial diversity can vary across different body sites, such as the skin, mouth, and gut. It also discusses how individual differences in microbial diversity can lead to variations in health outcomes.

πŸ’‘Mosquito Attraction

The video script mentions that some people are more prone to mosquito bites due to the different microbes on their skin, which produce chemicals that mosquitoes detect. This example illustrates how microbial differences at the individual level can have real-world implications, such as influencing who gets bitten by mosquitoes more frequently.

πŸ’‘Antibiotics

Antibiotics are medications used to treat bacterial infections. The video discusses how antibiotics can have unintended effects on the gut microbiome, potentially leading to long-term health issues such as obesity. It also shows how antibiotics can be used to treat conditions like C. diff. by altering the microbial balance in the gut.

πŸ’‘Cesarean Section

A Cesarean section, or C-section, is a surgical procedure used to deliver a baby. The video script suggests that babies born via C-section may have a different initial microbial community compared to those born vaginally, which could be linked to a higher risk of certain health conditions later in life. This highlights the impact of birth method on early microbial colonization and subsequent health.

πŸ’‘Fecal Transplant

A fecal transplant, also known as a microbiota transplantation, is a medical procedure in which fecal matter from a healthy donor is transferred to a recipient to restore a healthy gut microbiome. The video script provides an example of how this procedure can be used to treat patients with C. diff., showing a rapid and dramatic shift in the microbial community and a corresponding improvement in symptoms.

πŸ’‘American Gut Project

The American Gut Project is a crowd-funded citizen science initiative that allows individuals to contribute to the study of the human microbiome by submitting their own microbial samples. The video script describes this project as a way to engage the public in scientific research and to build a comprehensive map of microbial diversity across different populations.

πŸ’‘Microbiome Therapy

Microbiome therapy involves manipulating the microbial communities in the body to treat or prevent disease. The video script discusses the potential of such therapies, including the use of fecal transplants to treat C. diff. and the possibility of tailoring treatments to individual microbial profiles. This concept underscores the growing recognition of the microbiome as a target for medical intervention.

Highlights

Ancient Egyptians preserved some organs but discarded the brain, reflecting a historical lack of understanding of its importance.

The gut, and its microbes, are as important as the brain but have been similarly neglected until recently.

Microbes on our skin can affect our attractiveness to mosquitoes, demonstrating the influence of microbes on everyday experiences.

Gut microbes can determine the effectiveness and toxicity of certain medications, including painkillers and heart drugs.

In fruit flies, microbes influence mating preferences, suggesting a potential link to human behavior.

Microbes perform critical functions including digestion, immune system education, disease resistance, and possibly behavior modification.

The Human Microbiome Project, funded by NIH, aimed to map the DNA sequences of all microbes in the human body.

Microbial communities vary significantly by body site, with each site hosting a unique set of microbes.

Individuals can differ greatly in their gut microbial composition, even more so than human DNA variations.

Microbes in our bodies outnumber human cells by a factor of 10 to 1, indicating a vast microbial presence.

The number of microbial genes in the human body can vastly exceed the number of human genes.

Microbial DNA can be traced on objects we touch, allowing for personal identification with high accuracy.

Microbial communities in adults are stable and maintain a unique identity even when living with others.

The mode of birth significantly influences initial microbial colonization, with vaginal birth providing protective microbes.

Early life interventions, such as antibiotics, can have long-term effects on the gut microbiome and health.

Microbes have been linked to various diseases, including inflammatory bowel disease, heart disease, colon cancer, and obesity.

In mice, microbial transplants can lead to weight gain or loss, demonstrating the potential for microbial therapies in obesity.

The American Gut project allows public participation in microbiome research, contributing to a broader understanding of microbial impacts on health.

Fecal microbial transplants have been successful in treating C. diff. infections that are resistant to antibiotics.

Transcripts

play00:13

We humans have always been very concerned about the health of our bodies,

play00:17

but we haven't always been that good at figuring out what's important.

play00:21

Take the ancient Egyptians, for example:

play00:23

very concerned about the body parts they thought they'd need in the afterlife,

play00:27

but they left some parts out.

play00:29

This part, for example.

play00:32

Although they very carefully preserved the stomach, the lungs,

play00:35

the liver, and so forth,

play00:36

they just mushed up the brain, drained it out through the nose,

play00:39

and threw it away,

play00:41

which makes sense, really,

play00:42

because what does a brain do for us anyway?

play00:45

But imagine if there were a kind of neglected organ in our bodies

play00:48

that weighed just as much as the brain

play00:50

and in some ways was just as important to who we are,

play00:53

but we knew so little about and treated with such disregard.

play00:57

And imagine if, through new scientific advances,

play01:00

we were just beginning to understand

play01:01

its importance to how we think of ourselves.

play01:04

Wouldn't you want to know more about it?

play01:07

Well, it turns out that we do have something just like that:

play01:10

our gut,

play01:12

or rather, its microbes.

play01:15

But it's not just the microbes in our gut that are important.

play01:18

Microbes all over our body

play01:19

turn out to be really critical to a whole range of differences

play01:22

that make different people who we are.

play01:25

So for example, have you ever noticed

play01:27

how some people get bitten by mosquitos way more often than others?

play01:31

It turns out that everyone's anecdotal experience out camping is actually true.

play01:36

For example, I seldom get bitten by mosquitos,

play01:38

but my partner Amanda attracts them in droves,

play01:41

and the reason why is that we have different microbes on our skin

play01:44

that produce different chemicals that the mosquitos detect.

play01:48

Now, microbes are also really important in the field of medicine.

play01:51

So, for example, what microbes you have in your gut

play01:54

determine whether particular painkillers are toxic to your liver.

play01:58

They also determine whether or not other drugs will work for your heart condition.

play02:02

And, if you're a fruit fly, at least,

play02:05

your microbes determine who you want to have sex with.

play02:08

We haven't demonstrated this in humans yet

play02:10

but maybe it's just a matter of time before we find out. (Laughter)

play02:15

So microbes are performing a huge range of functions.

play02:17

They help us digest our food.

play02:19

They help educate our immune system.

play02:21

They help us resist disease,

play02:23

and they may even be affecting our behavior.

play02:26

So what would a map of all these microbial communities look like?

play02:30

Well, it wouldn't look exactly like this,

play02:32

but it's a helpful guide for understanding biodiversity.

play02:35

Different parts of the world have different landscapes of organisms

play02:39

that are immediately characteristic of one place or another

play02:43

or another.

play02:45

With microbiology, it's kind of the same, although I've got to be honest with you:

play02:49

All the microbes essentially look the same under a microscope.

play02:52

So instead of trying to identify them visually,

play02:55

what we do is we look at their DNA sequences,

play02:57

and in a project called the Human Microbiome Project,

play03:00

NIH funded this $173 million project

play03:04

where hundreds of researchers came together

play03:06

to map out all the A's, T's, G's, and C's,

play03:09

and all of these microbes in the human body.

play03:11

So when we take them together, they look like this.

play03:14

It's a bit more difficult to tell who lives where now, isn't it?

play03:18

What my lab does is develop computational techniques that allow us

play03:22

to take all these terabytes of sequence data

play03:24

and turn them into something that's a bit more useful as a map,

play03:27

and so when we do that with the human microbiome data

play03:30

from 250 healthy volunteers,

play03:32

it looks like this.

play03:35

Each point here represents all the complex microbes

play03:38

in an entire microbial community.

play03:40

See, I told you they basically all look the same.

play03:43

So what we're looking at is each point represents one microbial community

play03:46

from one body site of one healthy volunteer.

play03:49

And so you can see that there's different parts of the map in different colors,

play03:53

almost like separate continents.

play03:54

And what it turns out to be

play03:56

is that those, as the different regions of the body,

play03:58

have very different microbes in them.

play04:00

So what we have is we have the oral community up there in green.

play04:04

Over on the other side, we have the skin community in blue,

play04:07

the vaginal community in purple,

play04:09

and then right down at the bottom, we have the fecal community in brown.

play04:13

And we've just over the last few years

play04:15

found out that the microbes in different parts of the body

play04:18

are amazingly different from one another.

play04:20

So if I look at just one person's microbes

play04:23

in the mouth and in the gut,

play04:25

it turns out that the difference between those two microbial communities

play04:28

is enormous.

play04:30

It's bigger than the difference between the microbes in this reef

play04:33

and the microbes in this prairie.

play04:36

So this is incredible when you think about it.

play04:38

What it means is that a few feet of difference in the human body

play04:42

makes more of a difference to your microbial ecology

play04:44

than hundreds of miles on Earth.

play04:46

And this is not to say that two people look basically the same

play04:49

in the same body habitat, either.

play04:51

So you probably heard

play04:53

that we're pretty much all the same in terms of our human DNA.

play04:56

You're 99.99 percent identical in terms of your human DNA

play05:00

to the person sitting next to you.

play05:02

But that's not true of your gut microbes:

play05:04

you might only share 10 percent similarity

play05:07

with the person sitting next to you in terms of your gut microbes.

play05:10

So that's as different as the bacteria on this prairie

play05:13

and the bacteria in this forest.

play05:16

So these different microbes

play05:17

have all these different kinds of functions that I told you about,

play05:21

everything from digesting food

play05:22

to involvement in different kinds of diseases,

play05:25

metabolizing drugs, and so forth.

play05:27

So how do they do all this stuff?

play05:29

Well, in part it's because

play05:31

although there's just three pounds of those microbes in our gut,

play05:34

they really outnumber us.

play05:36

And so how much do they outnumber us?

play05:38

Well, it depends on what you think of as our bodies.

play05:41

Is it our cells?

play05:43

Well, each of us consists of about 10 trillion human cells,

play05:46

but we harbor as many as 100 trillion microbial cells.

play05:49

So they outnumber us 10 to one.

play05:52

Now, you might think, well, we're human because of our DNA,

play05:56

but it turns out that each of us has about 20,000 human genes,

play05:59

depending on what you count exactly,

play06:01

but as many as two million to 20 million microbial genes.

play06:06

So whichever way we look at it, we're vastly outnumbered

play06:08

by our microbial symbionts.

play06:11

And it turns out that in addition to traces of our human DNA,

play06:15

we also leave traces of our microbial DNA

play06:17

on everything we touch.

play06:19

We showed in a study a few years ago

play06:20

that you can actually match the palm of someone's hand up

play06:23

to the computer mouse that they use routinely

play06:25

with up to 95 percent accuracy.

play06:28

So this came out in a scientific journal a few years ago,

play06:31

but more importantly, it was featured on "CSI: Miami,"

play06:33

so you really know it's true.

play06:35

(Laughter)

play06:36

So where do our microbes come from in the first place?

play06:40

Well if, as I do, you have dogs or kids,

play06:43

you probably have some dark suspicions about that,

play06:45

all of which are true, by the way.

play06:47

So just like we can match you to your computer equipment

play06:50

by the microbes you share,

play06:51

we can also match you up to your dog.

play06:54

But it turns out that in adults,

play06:56

microbial communities are relatively stable,

play06:58

so even if you live together with someone,

play07:00

you'll maintain your separate microbial identity

play07:02

over a period of weeks, months, even years.

play07:05

It turns out that our first microbial communities

play07:08

depend a lot on how we're born.

play07:11

So babies that come out the regular way,

play07:13

all of their microbes are basically like the vaginal community,

play07:16

whereas babies that are delivered by C-section,

play07:18

all of their microbes instead look like skin.

play07:21

And this might be associated with some of the differences

play07:24

in health associated with Cesarean birth,

play07:27

such as more asthma, more allergies, even more obesity,

play07:30

all of which have been linked to microbes now,

play07:33

and when you think about it, until recently, every surviving mammal

play07:37

had been delivered by the birth canal,

play07:39

and so the lack of those protective microbes

play07:41

that we've co-evolved with might be really important

play07:44

for a lot of these different conditions that we now know involve the microbiome.

play07:48

When my own daughter was born a couple of years ago

play07:51

by emergency C-section,

play07:53

we took matters into our own hands

play07:55

and made sure she was coated with those vaginal microbes

play07:58

that she would have gotten naturally.

play08:00

Now, it's really difficult to tell whether this has had an effect

play08:03

on her health specifically, right?

play08:05

With a sample size of just one child, no matter how much we love her,

play08:09

you don't really have enough of a sample size

play08:11

to figure out what happens on average,

play08:13

but at two years old, she hasn't had an ear infection yet,

play08:16

so we're keeping our fingers crossed on that one.

play08:18

And what's more, we're starting to do clinical trials with more children

play08:22

to figure out whether this has a protective effect generally.

play08:27

So how we're born has a tremendous effect on what microbes we have initially,

play08:32

but where do we go after that?

play08:34

What I'm showing you again here is this map

play08:36

of the Human Microbiome Project Data,

play08:38

so each point represents a sample from one body site

play08:41

from one of 250 healthy adults.

play08:43

And you've seen children develop physically.

play08:45

You've seen them develop mentally.

play08:47

Now, for the first time, you're going to see

play08:50

one of my colleague's children develop microbially.

play08:53

So what we are going to look at

play08:54

is we're going to look at this one baby's stool,

play08:57

the fecal community, which represents the gut,

play09:00

sampled every week for almost two and a half years.

play09:03

And so we're starting on day one.

play09:04

What's going to happen is that the infant is going to start off as this yellow dot,

play09:08

and you can see that he's starting off basically in the vaginal community,

play09:12

as we would expect from his delivery mode.

play09:14

And what's going to happen over these two and a half years

play09:17

is that he's going to travel all the way down

play09:19

to resemble the adult fecal community from healthy volunteers down at the bottom.

play09:23

So I'm just going to start this going and we'll see how that happens.

play09:26

What you can see, and remember each step in this is just one week,

play09:30

what you can see is that week to week,

play09:32

the change in the microbial community of the feces of this one child,

play09:37

the differences week to week are much greater

play09:40

than the differences between individual healthy adults

play09:42

in the Human Microbiome Project cohort,

play09:44

which are those brown dots down at the bottom.

play09:47

And you can see he's starting to approach the adult fecal community.

play09:50

This is up to about two years.

play09:51

But something amazing is about to happen here.

play09:53

So he's getting antibiotics for an ear infection.

play09:56

What you can see is this huge change in the community,

play09:59

followed by a relatively rapid recovery.

play10:01

I'll just rewind that for you.

play10:05

And what we can see is that just over these few weeks,

play10:08

we have a much more radical change,

play10:10

a setback of many months of normal development,

play10:13

followed by a relatively rapid recovery,

play10:15

and by the time he reaches day 838,

play10:19

which is the end of this video,

play10:21

you can see that he has essentially reached the healthy adult stool community,

play10:25

despite that antibiotic intervention.

play10:27

So this is really interesting because it raises fundamental questions

play10:30

about what happens when we intervene at different ages in a child's life.

play10:35

So does what we do early on, where the microbiome is changing so rapidly,

play10:38

actually matter,

play10:39

or is it like throwing a stone into a stormy sea,

play10:42

where the ripples will just be lost?

play10:45

Well, fascinatingly, it turns out that if you give children antibiotics

play10:49

in the first six months of life,

play10:50

they're more likely to become obese later on

play10:53

than if they don't get antibiotics then or only get them later,

play10:56

and so what we do early on may have profound impacts

play10:59

on the gut microbial community and on later health

play11:03

that we're only beginning to understand.

play11:05

So this is fascinating, because one day, in addition to the effects

play11:09

that antibiotics have on antibiotic-resistant bacteria,

play11:12

which are very important,

play11:14

they may also be degrading our gut microbial ecosystems,

play11:17

and so one day we may come to regard antibiotics with the same horror

play11:20

that we currently reserve for those metal tools

play11:22

that the Egyptians used to use to mush up the brains

play11:25

before they drained them out for embalming.

play11:27

So I mentioned that microbes have all these important functions,

play11:30

and they've also now, just over the past few years,

play11:32

been connected to a whole range of different diseases,

play11:35

including inflammatory bowel disease,

play11:37

heart disease, colon cancer,

play11:39

and even obesity.

play11:41

Obesity has a really large effect, as it turns out,

play11:44

and today, we can tell whether you're lean or obese

play11:46

with 90 percent accuracy

play11:48

by looking at the microbes in your gut.

play11:50

Now, although that might sound impressive,

play11:52

in some ways it's a little bit problematic as a medical test,

play11:56

because you can probably tell which of these people is obese

play11:59

without knowing anything about their gut microbes,

play12:01

but it turns out that even if we sequence their complete genomes

play12:04

and had all their human DNA,

play12:06

we could only predict which one was obese with about 60 percent accuracy.

play12:10

So that's amazing, right?

play12:12

What it means that the three pounds of microbes that you carry around with you

play12:16

may be more important for some health conditions

play12:18

than every single gene in your genome.

play12:23

And then in mice, we can do a lot more.

play12:25

So in mice, microbes have been linked to all kinds of additional conditions,

play12:29

including things like multiple sclerosis,

play12:32

depression, autism, and again, obesity.

play12:35

But how can we tell whether these microbial differences

play12:38

that correlate with disease are cause or effect?

play12:41

Well, one thing we can do is we can raise some mice

play12:44

without any microbes of their own in a germ-free bubble.

play12:46

Then we can add in some microbes that we think are important,

play12:49

and see what happens.

play12:51

When we take the microbes from an obese mouse

play12:54

and transplant them into a genetically normal mouse

play12:56

that's been raised in a bubble with no microbes of its own,

play12:59

it becomes fatter than if it got them from a regular mouse.

play13:04

Why this happens is absolutely amazing, though.

play13:06

Sometimes what's going on is that the microbes

play13:08

are helping them digest food more efficiently from the same diet,

play13:11

so they're taking more energy from their food,

play13:13

but other times, the microbes are actually affecting their behavior.

play13:17

What they're doing is they're eating more than the normal mouse,

play13:20

so they only get fat if we let them eat as much as they want.

play13:24

So this is really remarkable, right?

play13:27

The implication is that microbes can affect mammalian behavior.

play13:33

So you might be wondering whether we can also do this sort of thing across species,

play13:37

and it turns out that if you take microbes from an obese person

play13:40

and transplant them into mice you've raised germ-free,

play13:43

those mice will also become fatter

play13:45

than if they received the microbes from a lean person,

play13:48

but we can design a microbial community that we inoculate them with

play13:52

that prevents them from gaining this weight.

play13:55

We can also do this for malnutrition.

play13:57

So in a project funded by the Gates Foundation,

play14:00

what we're looking at is children in Malawi

play14:02

who have kwashiorkor, a profound form of malnutrition,

play14:05

and mice that get the kwashiorkor community transplanted into them

play14:08

lose 30 percent of their body mass

play14:11

in just three weeks,

play14:12

but we can restore their health by using the same peanut butter-based supplement

play14:16

that is used for the children in the clinic,

play14:18

and the mice that receive the community

play14:19

from the healthy identical twins of the kwashiorkor children do fine.

play14:24

This is truly amazing because it suggests that we can pilot therapies

play14:27

by trying them out in a whole bunch of different mice

play14:30

with individual people's gut communities

play14:32

and perhaps tailor those therapies all the way down to the individual level.

play14:38

So I think it's really important that everyone has a chance

play14:41

to participate in this discovery.

play14:43

So, a couple of years ago,

play14:45

we started this project called American Gut,

play14:47

which allows you to claim a place for yourself on this microbial map.

play14:51

This is now the largest crowd-funded science project that we know of --

play14:54

over 8,000 people have signed up at this point.

play14:57

What happens is, they send in their samples,

play15:00

we sequence the DNA of their microbes and then release the results back to them.

play15:04

We also release them, de-identified, to scientists, to educators,

play15:07

to interested members of the general public, and so forth,

play15:10

so anyone can have access to the data.

play15:13

On the other hand,

play15:15

when we do tours of our lab at the BioFrontiers Institute,

play15:18

and we explain that we use robots and lasers to look at poop,

play15:21

it turns out that not everyone wants to know.

play15:25

(Laughter)

play15:26

But I'm guessing that many of you do,

play15:28

and so I brought some kits here if you're interested

play15:30

in trying this out for yourself.

play15:35

So why might we want to do this?

play15:36

Well, it turns out that microbes are not just important

play15:39

for finding out where we are in terms of our health,

play15:42

but they can actually cure disease.

play15:44

This is one of the newest things we've been able to visualize

play15:47

with colleagues at the University of Minnesota.

play15:50

So here's that map of the human microbiome again.

play15:53

What we're looking at now --

play15:54

I'm going to add in the community of some people with C. diff.

play15:57

So, this is a terrible form of diarrhea

play16:00

where you have to go up to 20 times a day,

play16:02

and these people have failed antibiotic therapy for two years

play16:05

before they're eligible for this trial.

play16:08

So what would happen if we transplanted some of the stool from a healthy donor,

play16:12

that star down at the bottom,

play16:14

into these patients.

play16:15

Would the good microbes do battle with the bad microbes

play16:18

and help to restore their health?

play16:20

So let's watch exactly what happens there.

play16:22

Four of those patients are about to get a transplant

play16:25

from that healthy donor at the bottom,

play16:27

and what you can see is that immediately,

play16:29

you have this radical change in the gut community.

play16:31

So one day after you do that transplant,

play16:33

all those symptoms clear up,

play16:35

the diarrhea vanishes,

play16:36

and they're essentially healthy again, coming to resemble the donor's community,

play16:40

and they stay there.

play16:42

(Applause)

play16:49

So we're just at the beginning of this discovery.

play16:51

We're just finding out that microbes have implications

play16:54

for all these different kinds of diseases,

play16:56

ranging from inflammatory bowel disease to obesity,

play16:58

and perhaps even autism and depression.

play17:01

What we need to do, though,

play17:03

is we need to develop a kind of microbial GPS,

play17:05

where we don't just know where we are currently

play17:07

but also where we want to go and what we need to do

play17:11

in order to get there,

play17:12

and we need to be able to make this simple enough

play17:15

that even a child can use it. (Laughter)

play17:17

Thank you.

play17:20

(Applause)

Rate This
β˜…
β˜…
β˜…
β˜…
β˜…

5.0 / 5 (0 votes)

Related Tags
Gut MicrobesHealth ImpactHuman MicrobiomeBehavior InfluenceAntibioticsDisease ConnectionObesity LinkMicrobial TherapyScientific DiscoveryHealth Innovation