Pembuktian Langsung | Logika Matematika

ONEDU
5 Oct 202114:11

Summary

TLDRThis video lesson covers three mathematical proof methods: direct proof, proof by contraposition, and proof by contradiction. The instructor first explains direct proof, where a mathematical statement is proven without changing its structure. Using examples like proving that the square of an odd number is also odd, the lesson walks through step-by-step solutions. The method of direct proof is applied to different scenarios, showing how to logically demonstrate the validity of mathematical statements, particularly involving odd and even numbers.

Takeaways

  • 📘 The video focuses on mathematical logic, particularly proof methods.
  • 🧠 Three proof methods are discussed: direct proof, contrapositive proof, and indirect proof using contradiction.
  • ✏️ Direct proof is explained as proving a mathematical statement without altering its structure, directly assuming P is true to prove Q is true.
  • 📐 The first example demonstrates proving that if 'n' is an odd integer, then 'n squared' is also odd.
  • 🔍 The statement is broken down into P (n is odd) and Q (n squared is odd), starting from the assumption that n is odd and using substitution to show that n squared is odd.
  • 🔄 The proof shows that if 'n = 2k + 1', squaring it results in '4k^2 + 4k + 1', which is also odd, concluding the proof.
  • ✍️ The second example involves proving that if 'a' is odd and 'b' is even, then '3a^2 - b + 1' is even.
  • 🔗 The P and Q statements are again defined: P is 'a is odd and b is even', and Q is '3a^2 - b + 1 is even'.
  • 🔑 The proof uses the same approach, substituting values for 'a' and 'b' to simplify the expression and show that it results in an even number.
  • ✅ Both examples conclude by demonstrating the validity of the statements using direct proof methods.

Q & A

  • What is a direct proof in mathematical logic?

    -A direct proof is a method of proving a mathematical statement without altering its structure. In this method, to prove an implication 'if P then Q,' we assume P is true and show that Q must also be true.

  • How do you prove that if a number n is odd, then n squared is also odd?

    -To prove this, assume n is an odd integer, so it can be expressed as 2k + 1, where k is an integer. Squaring n results in (2k + 1)² = 4k² + 4k + 1, which can be factored as 2(2k² + 2k) + 1. This is of the form 2m + 1, indicating that n² is also odd.

  • What is the main concept used in proving the first example in the video?

    -The main concept used is that if n is an odd integer, it can be written as 2k + 1, and squaring this form leads to an expression that confirms n² is odd.

  • What are the three methods of proof introduced in the video?

    -The three methods of proof discussed are direct proof, proof by contrapositive, and proof by contradiction.

  • What is proof by contrapositive?

    -Proof by contrapositive involves proving that the contrapositive of a statement is true. Instead of proving 'if P then Q,' we prove 'if not Q then not P,' which is logically equivalent.

  • What is proof by contradiction?

    -Proof by contradiction involves assuming the negation of the statement to be proven and showing that this assumption leads to a contradiction, thereby proving the original statement.

  • What is the definition of an odd number in the context of the video?

    -An odd number is defined as any integer of the form 2k + 1, where k is an integer.

  • How is a number expressed when it is even, as explained in the video?

    -An even number is expressed as 2p, where p is an integer, indicating that the number is a multiple of 2.

  • In the second proof, how is the expression 3a² - b + 1 shown to be even?

    -In the second proof, a is assumed to be odd (a = 2k + 1), and b is assumed to be even (b = 2p). Substituting these into the expression and simplifying it results in a form that confirms the expression is even.

  • What is the purpose of factoring in the second proof?

    -Factoring is used to simplify the expression 3a² - b + 1 by breaking it down into terms that clearly show the even or odd nature of the result, thus proving that the expression is even.

Outlines

00:00

📘 Introduction to Mathematical Proof Methods

This paragraph introduces the topic of mathematical logic, focusing on three proof methods: direct proof, contraposition, and indirect proof using contradiction. The explanation begins with direct proof, where the truth of a mathematical statement is proven without altering its structure. It emphasizes proving an implication 'if P then Q' by assuming P is true and demonstrating Q follows.

05:01

🧮 Example of Proving a Statement (Odd Numbers)

The paragraph presents an example of direct proof where the statement to prove is: 'If n is an odd integer, then n squared is also odd.' The proof begins by defining P as 'n is odd' and Q as 'n squared is odd.' The steps include representing n as 2k+1 (where k is an integer) and squaring this expression. After simplifying, the result confirms that n squared is also odd, thus proving the statement through direct proof.

10:02

📊 Another Example of Direct Proof (Odd and Even Numbers)

This section introduces another example, where the goal is to prove that 'if a is odd and b is even, then 3a² - b + 1 is even.' The proof starts by defining a as an odd number (2k+1) and b as an even number (2p). By substituting these into the equation 3a² - b + 1, the simplification process demonstrates that the result is even. This concludes the proof using the direct method, highlighting the consistent pattern of solving such problems by substitution and simplification.

Mindmap

Keywords

💡Direct Proof

A method of mathematical proof that directly shows the truth of a given statement by logically deriving the conclusion from the premises without altering the structure of the statement. In the video, the direct proof method is used to prove statements such as 'if n is an odd integer, then n squared is also an odd integer.'

💡Contradiction

This is a proof method where the negation of the statement is assumed to be true, and through logical steps, a contradiction is reached, showing that the original statement must be true. In the video, this method is presented as one of the key ways to establish the truth of a mathematical proposition.

💡Contrapositive Proof

Involves proving the contrapositive of a statement instead of the original statement itself. For a statement 'if P then Q,' the contrapositive would be 'if not Q then not P.' The video explains how this method can simplify proofs in certain situations.

💡Odd Integer

An integer that cannot be divided evenly by 2, typically represented as 2k + 1 where k is an integer. The video uses the example of proving that if n is an odd integer, then n squared is also odd.

💡Even Integer

An integer that is divisible by 2, often represented as 2k where k is an integer. The video illustrates this concept by showing how mathematical proofs can confirm that certain expressions result in even numbers when the inputs are even.

💡Implication (P → Q)

A logical structure where if proposition P is true, then proposition Q must also be true. The video frequently references implications, such as proving that if an integer is odd (P), its square is also odd (Q).

💡Mathematical Proof

A logical argument that verifies the truth of a mathematical statement based on premises and deduction rules. The video introduces various proof techniques like direct proof, contradiction, and contrapositive proof.

💡Substitution

A method used in mathematical proofs where variables or expressions are replaced with equivalent values or expressions to simplify or solve a problem. The video demonstrates substitution, for example, when substituting n as 2k+1 for odd integers to prove that n squared is also odd.

💡Distributive Property

A property of operations in mathematics that allows terms to be multiplied across parentheses, such as a(b + c) = ab + ac. In the video, this property is used in calculations like expanding (2k + 1)^2 during the proof process.

💡Quadratic Expression

An algebraic expression where the highest degree of the variable is squared (e.g., n^2). The video discusses quadratic expressions in the context of proving that if an integer n is odd, then n^2 is also odd.

Highlights

Introduction to mathematical logic and proof methods, including direct proof, contrapositive, and contradiction.

Direct proof is a method of proving a mathematical statement without changing its structure.

The objective of a direct proof is to show that if P is true, then Q must also be true.

First example: If n is an odd integer, then n squared is also an odd integer.

To prove the above statement, start by assuming n is an odd number, expressed as 2k + 1, where k is an integer.

By squaring (2k + 1), you obtain 4k^2 + 4k + 1, which simplifies to the form of 2m + 1, proving the result is odd.

The final conclusion is that n squared is odd, completing the direct proof.

Second example: Given a is an odd number and b is an even number, prove that 3a^2 - b + 1 is an even number.

Define a as 2k + 1 (odd) and b as 2p (even), then substitute these into the equation 3a^2 - b + 1.

By expanding and simplifying the expression, you find the result is even, confirming the proof.

In both examples, the direct proof method is used to verify mathematical statements.

Key concepts include expressing odd numbers as 2k + 1 and even numbers as 2p.

Both proofs rely on substitution and algebraic manipulation to demonstrate the final result.

Direct proof is effective when the structure of the statement can be easily manipulated algebraically.

The examples show how to approach proof writing step by step using clear logical reasoning.

Transcripts

play00:00

Halo

play00:00

kembali lagi di video pembelajaran

play00:04

logika matematika pada video ini kita

play00:08

akan belajar mengenai metode pembuktian

play00:11

ada tiga metode pembuktian yang akan

play00:14

dipelajari yaitu metode langsung yang

play00:18

kedua metode

play00:21

kontraposisi dan ketiga metode tidak

play00:25

langsung menggunakan kontradiksi

play00:29

pada metode pertama yaitu metode

play00:32

langsung

play00:32

[Musik]

play00:34

pembuktian langsung adalah pembuktian

play00:36

suatu kalimat atau sifat matematika

play00:39

tanpa mengubah Susunan kalimat tersebut

play00:42

dengan kata lain untuk membuktikan

play00:45

kebenaran pernyataan implikasi p maka q

play00:49

dengan memisalkan P benar maka harus

play00:53

dibuktikan juga bahwa Ki juga

play00:58

Hai Papa ulangi lagi yaitu pembuktian

play01:02

langsung adalah pembuktian suatu kalimat

play01:04

atau sifat matematika tanpa mengubah

play01:08

Susunan kalimat tersebut dengan kata

play01:11

lain untuk membuktikan kebenaran

play01:13

pernyataan implikasi p maka q dengan

play01:18

memisalkan P benar maka harus dibuktikan

play01:20

juga bahwa Ki juga

play01:27

ya Allah

play01:28

Oke sekarang kita masuk ke

play01:31

contoh pembuktian yang pertama Ya

play01:35

di sini Saya punya soal saya tulis dulu

play01:40

soalnya

play01:41

Habib

play01:43

book tikan

play01:47

Hai Hah bahwa

play01:50

Graha jika ada n bilangan bulat

play01:57

bilangan bulat ganjil

play02:00

ngomong dulu

play02:02

Indonesia maka

play02:05

Hai ada n kuadrat

play02:09

Hai juga bilangan

play02:12

Hai bulat ganjil

play02:15

udah-udah kita akan membuktikan suatu

play02:17

pernyataan ini ketika ada n bilangan

play02:20

ganjil maka N kuadrat juga bilangan

play02:24

ganjil

play02:26

Bagaimana membuktikan pernyataan ini

play02:33

Hai semuanya

play02:34

langkah pertama

play02:36

yaitu kita memisahkan dua Pernyataan

play02:40

diatas dengan P dan Q R

play02:45

Oke kita berangkat dari konsep

play02:48

implikasi yaitu p maka q ya dimana P

play02:54

kita definisikan sebagai

play02:56

n bilangan bulat

play02:59

Bulangan bulat ganjil

play03:04

Oh ya dan kirinya adalah

play03:08

n kuadrat

play03:11

juga bilangan bulat ganjil

play03:17

nyamuk

play03:19

ngomong

play03:21

Hai perhatikan disini sebelum kita

play03:23

membuktikan kita mempunyai khas suatu

play03:27

konsep bahwa ketika n-nya ganjil ya

play03:32

Hai maka sedemikian sehingga kita bisa

play03:35

tulis dengan konsep yang lain yaitu 2K

play03:38

ditambah satu juga ganjil ready manakah

play03:43

adalah bilangan bulat

play03:47

ngomong r

play03:50

ngomong karena n ganjil sehingga 2K plus

play03:53

satu juga ganjil ya kita coba lihat

play03:57

dengan memanfaatkan n sebagai

play04:02

kedua k-plus satu maka kita subtitusikan

play04:07

Oh ya ketika n kuadrat ya ketika n-nya

play04:11

adalah ini dua couple satu maka kita

play04:16

bisa tulis 2K plus satu dikuadratkan ya

play04:21

Sehingga ini akan menghasilkan

play04:25

dua kp1 kuadrat yaitu

play04:28

4K kuadrat ditambah 4K ditambah satu

play04:36

oke dari bentuk ini kita bisa faktorkan

play04:42

menjadi kita faktorkan yaitu

play04:48

m2k pangkat dua ya kemudian Plus

play04:54

oke om om Bos 1 ya 2 ini dikali 2 kapal

play05:00

kedua adalah 4K

play05:03

kemudian dua kali Kak

play05:06

yaitu ketika ini tambahkan ya ini

play05:09

berlaku sifat distributif

play05:12

ketika kita operasikan akan sama balik

play05:16

lagi ke atas

play05:19

Andai kita andaikan terlebih dahulu

play05:23

bahwa yang dalam kurung yaitu 2K Plus 2

play05:27

+ k ya adalah kita inisial kan dengan m

play05:34

sedemikian sehingga

play05:36

Oh ya n kuadrat

play05:39

ini sama dengan

play05:43

2m plus satu oke

play05:47

perhatikan kebentuk ini

play05:53

Hai bentuk yang akhir yang ini

play05:58

Hai kalian pernah mendengar sebelumnya

play06:00

yaitu di atas

play06:03

yang ini jadi polanya sama yaitu

play06:08

22 ke atau 2m plus satu juga ganjil

play06:13

sehingga dapat dikatakan pernyataan ini

play06:17

adalah terbukti

play06:21

menggunakan

play06:23

metode teknik langsung ke

play06:29

Oke kita coba untuk soal yang kedua

play06:37

kita coba soal yang kedua

play06:43

udah ini soalnya buktikan

play06:48

Indonesia ya jika ada a

play06:53

ini adalah bilangan ganjil

play06:58

ndak dan b bilangan genap

play07:01

the lounge

play07:04

Iya jadi ada Agan Jil dan b genap ya

play07:08

sedemikian sehingga

play07:10

buktikan bahwa

play07:13

3A kuadrat

play07:16

Hai min b +

play07:20

ini adalah

play07:23

Hai genap

play07:25

pagi2 buktikan

play07:28

ya kita akan buktikan bahwa 3A kuadrat

play07:33

negatif B plus satu adalah genap jika

play07:37

dan hanya jika a bilangan ganjil dan b

play07:40

genap

play07:41

Oke kita akan coba menjawab menggunakan

play07:45

metode langsung

play07:50

nge-rap pembahasan

play07:55

ngomonge Regita ubah terlebih dahulu

play07:58

Pernyataan diatas dengan simbol p&q

play08:01

yaitu v-nya dalah a.rac bilangan ganjil

play08:06

ya dan b bilangan

play08:10

genap ya ini untuk pernyataan

play08:14

[Musik]

play08:19

ngomonge kemudian kita buat juga

play08:22

pernyataan kingnya yaitu 3A kuadrat min

play08:27

b plus satu adalah

play08:30

genap

play08:33

ngomonge Ra

play08:36

key sebelumnya kita punya konsep ada

play08:40

konsep yang pertama catatan

play08:43

Hai Yap karena ke tadi adalah itu ganjil

play08:48

Ayah

play08:50

sedemikian sehingga

play08:52

Hai bahwa 2K + 1H

play08:57

Hai juga ganjil Ya ini yang pertama kita

play09:01

ingat dulu Konsep ini ketika adalah

play09:04

ganjil maka 2K plus satu adalah

play09:08

ganjil

play09:10

bagaimana ketika genapnya ya

play09:14

ketika B genap ya ya kita tahu bahwa

play09:19

konsep genap itu adalah kelipatan

play09:22

dianggap telah kita misalkan

play09:25

22 P Yaa intinya

play09:28

Paul ketika 2P itu kita bisa

play09:32

definisikan bahwa akan menghasilkan

play09:34

bilangan genap yang berangkat dari dua

play09:38

karakter ini coba kita buktikan bahwa

play09:44

kwadran Min 21 adalah bilangan genap oke

play09:52

Ayo kita subtitusikan dulu bahwa tadi

play09:55

sebelumnya kita sudah punya bahwa a

play09:57

adalah dua couple's satu maka kita

play10:01

subtitusikan

play10:02

sehingga

play10:04

32 couple satu ya karena hanya adalah

play10:09

201

play10:11

dikurangin B plus satu oke Oh ya kita

play10:17

coba bisa langsung tadi benya

play10:20

didefinisikan sebagai

play10:23

2P ya

play10:25

Oke kita langsung saja mengganti b nya

play10:29

juga yaitu 2P

play10:31

ditambah satu

play10:34

kemudian kita hitung saja Seperti biasa

play10:36

ya ya hai oke dilupain ada kuadratnya ya

play10:40

oke sehingga kita hitung dulu yang dalam

play10:43

kurung 2 kapal satu kuadrat ya yaitu

play10:46

berapa

play10:48

yaitu empat kwadrat setiap Plus

play10:52

4K ya kemudian plus satu

play10:58

kemudian kita tulis se-21 kembali

play11:04

Sai ini apa yang kita operasikan ya ya

play11:07

bagian pertama Ayah kita kalikan

play11:10

masing-masing yang dalam kurung dengan

play11:12

konstanta tiga yaitu menjadi dua kwadrat

play11:18

12 kapua drat ditambah 12k ditambah tiga

play11:25

oke

play11:27

Mbok kemudian

play11:29

masih di belakangnya yaitu 2 P + satunya

play11:33

sedemikian sehingga ini kita bisa

play11:37

membuat faktornya dari ini kita

play11:41

faktorkan yaitu menjadi

play11:44

the lounge

play11:46

hai oke di sini kita 3 plus satu ya

play11:50

berarti kita bisa

play11:55

cara mengoperasikannya terlebih dahulu

play11:58

Iya empok nya

play12:03

Hai bentuknya harus

play12:06

Hai harus sudah paling sederhana yah

play12:08

pertanyaan

play12:10

Hai

play12:11

sebentar 12 K2

play12:17

ngomong

play12:19

minus 2P ya kayaknya dah kayaknya

play12:23

plus

play12:25

4ceh Mari kita faktorkan Cari faktor

play12:30

yang sama yaitu

play12:35

Hai Keh berapa ini dua kali berapa yang

play12:37

hasilnya 12 kuadrat

play12:39

yaitu 6k

play12:42

kuadrat-2 dikali berapa yang hasilnya

play12:44

12k yaitu

play12:46

eh 6k

play12:49

ya

play12:50

kemudian

play12:53

selanjutnya adalah

play12:55

minus

play12:57

P Ya ini minvet tapi disini adalah pos 4

play13:03

kreasi

play13:04

Pengen ya atau karena perempuan adalah

play13:07

konstanta kita bisa

play13:08

tidak menulisnya kembali

play13:13

Oke selanjutnya kita bisa melihat

play13:17

sebuah kesamaan pola

play13:22

bersamaan polanya dimana

play13:25

Anggaplah yang dalam kurungnya itu

play13:27

adalah er saya

play13:30

sedemikian sehingga

play13:32

menjadi 2R

play13:36

Oh ya kita ingat bahwa

play13:38

variabel yang dekat dikalikan dengan

play13:41

konstanta dua yaitu juga

play13:44

memberikan hasil

play13:47

bilangan-bilangan genap wa dalam hal ini

play13:51

er adalah bilangan bulat

play13:54

Sehingga dalam hal ini

play13:57

soal di atas terbukti

play14:04

di bawah ini adalah terbukti benar

play14:07

menggunakan metode pembuktian langsung

Rate This

5.0 / 5 (0 votes)

Related Tags
MathematicsProof TechniquesEducational VideoLogical ThinkingMath ProofsOdd NumbersEven NumbersDirect ProofContradictionMath Education