Trajectory of a projectile with linear drag

Dr Ben Yelverton
7 Oct 202126:14

Summary

TLDRDans cette vidéo, l'analyse du trajectoire d'un projectile soumis à une force de trainée proportionnelle à sa propre vitesse est présentée. Après avoir établi les équations paramétriques de x et y en fonction du temps, la vidéo combine ces équations pour obtenir une équation cartésienne de la trajectoire. La trajectoire, affectée par la résistance de l'air, perd sa symétrie typique pour une trajectoire sans air resistance. Les conditions initiales et la résolution des équations différentielles permettent de trouver les expressions de x(t) et y(t), et finalement, une équation de trajectoire en fonction de x révèle une forme moins symétrique et plus verticale à mesure que le projectile avance.

Takeaways

  • 🔍 L'analyse porte sur la trajectoire d'un projectile soumis à une force de drag proportionnelle à sa propre vitesse.
  • 📐 La trajectoire est décrite par des équations paramétriques en x et y en fonction du temps, qui sont ensuite combinées pour obtenir une équation cartésienne.
  • 📉 La présence de la résistance de l'air altère la forme de la trajectoire, qui n'est plus symétrique comme dans le cas sans résistance.
  • ⏳ L'application de la deuxième loi de Newton en forme vectorielle permet d'établir un lien entre les forces agissant sur le projectile et son accélération.
  • 🧮 Les équations différentielles pour x et y sont résolues en utilisant des méthodes standard, notamment en cherchant des solutions exponentielles pour l'équation sans force de gravitation.
  • 🔄 La solution générale pour x en fonction du temps est une combinaison linéaire de deux solutions, l'une constante et l'autre décroissant exponentiellement.
  • 🎯 Les conditions initiales (position et vitesse initiales) sont appliquées pour déterminer les constantes dans les équations de la trajectoire.
  • 📉 L'équation différentielle pour y inclut une composante de force de gravitation, qui nécessite une solution en deux parties : la fonction complémentaire et l'intégrale particulière.
  • 📌 La forme de la trajectoire est affectée par la résistance de l'air, qui ralentit le composant horizontal de la vitesse, rendant la trajectoire plus vertical à mesure que le projectile avance.
  • 🧐 L'équation cartésienne finale de la trajectoire montre une dépendance en logaritme de la distance x, ce qui reflète la diminution de la vitesse horizontale due à la résistance de l'air.

Q & A

  • Quelle est la force de trainée (drag force) décrite dans le script ?

    -La force de trainée est une force proportionnelle à la vitesse de l'objet, notée comme -b * v, où b est une constante et v est la vitesse du projectile.

  • Quels sont les deux principaux composants de la force qui agit sur le projectile dans le script ?

    -Les deux principaux composants de la force sont la gravité, qui agit垂直向下, et la force de trainée (air resistance force), qui est proportionnelle à la vitesse du projectile.

  • Comment le script utilise-t-il la deuxième loi de Newton pour analyser le mouvement du projectile ?

    -Le script utilise la deuxième loi de Newton, qui relie la force à l'accélération, pour établir des équations différentielles pour les composantes x et y de la position du projectile.

  • Quelle est la forme vectorielle de l'équation de la deuxième loi de Newton appliquée au projectile ?

    -La forme vectorielle est F = m * a, où F représente la force resultante, m est la masse du projectile, et a est l'accélération, notée comme r'', où r est le vecteur de position.

  • Comment le script décompose l'équation vectorielle en composantes x et y ?

    -Le script décompose l'équation en deux équations séparées pour les composantes x et y, en prenant en compte la force de trainée et la gravité, et en utilisant les notations x'', y'', x', et y' pour les dérivées temporelles des coordonnées.

  • Quelle est la solution générale pour la composante x du mouvement du projectile ?

    -La solution générale pour x(t) est une combinaison linéaire de deux solutions: une constante (a) et une fonction exponentielle décroissante (b * e^(-b*t/m)), où a et b sont des constantes déterminées par les conditions initiales.

  • Comment le script résout l'équation différentielle pour la composante y en prenant en compte la force de trainée et la gravité ?

    -Le script résout l'équation pour y(t) en trouvant d'abord la fonction complémentaire (solution homogénéisée), puis en ajoutant une intégrale particulière basée sur une conjecture informée pour tenir compte de la force de trainée et de la gravité.

  • Quels sont les deux principaux termes dans la solution générale pour y(t) ?

    -Les deux principaux termes sont la fonction complémentaire, qui est une fonction exponentielle, et l'intégrale particulière, qui est une combinaison linéaire de t et de t², ajustée pour équilibrer la force de trainée et la gravité.

  • Comment le script utilise-t-il les conditions initiales pour déterminer les constantes dans les équations de mouvement ?

    -Le script applique les conditions initiales (position et vitesse au début du mouvement) pour résoudre les équations et trouver les valeurs des constantes a et b dans les expressions x(t) et y(t).

  • Quelle est la forme finale de l'équation cartésienne pour le trajectoire du projectile avec la force de trainée ?

    -L'équation cartésienne finale est y = (b * u_y + mg / b) * x - (m^2 * g / b^2) * ln(1 - b * x / m * u_x), où b est la constante de trainée, u_x et u_y sont les composantes initiales de la vitesse, et g est l'accélération due à la gravité.

Outlines

00:00

🚀 Introduction au trajectoire d'un projectile avec résistance de l'air

Le paragraphe introduit la notion d'étude de la trajectoire d'un projectile soumis à une force de drag ou de résistance de l'air proportionnelle à sa propre vitesse. L'objectif est de trouver des équations paramétriques pour x et y en fonction du temps, puis de les combiner pour obtenir une équation cartésienne de la trajectoire. La présence de la résistance de l'air altère la forme de la trajectoire par rapport au cas sans résistance. L'analyse débute par l'application de la deuxième loi de Newton pour établir un lien entre les forces agissantes sur le projectile, y compris la gravité et la force de drag, et son mouvement.

05:00

🔍 Application de la deuxième loi de Newton et équations différentielles

Ce paragraphe se concentre sur l'application de la deuxième loi de Newton sous forme vectorielle au projectile, ce qui conduit à une équation différentielle pour décrire son mouvement. L'accent est mis sur la résolution de cette équation pour la composante x, en prenant en compte l'absence de force de résistance dans cette direction. Une solution de substitution est proposée, basée sur une fonction exponentielle, pour laquelle les conditions initiales du mouvement sont appliquées pour déterminer les constantes dans l'équation.

10:01

🧮 Calcul des constantes et résolution de l'équation pour la composante x

Le paragraphe présente la méthode pour calculer les constantes dans l'équation de la composante x du mouvement du projectile. En utilisant les conditions initiales, notamment la vitesse initiale et la position de départ, les valeurs de ces constantes sont déterminées. La solution complète pour x en fonction du temps est ensuite obtenue en substituant ces valeurs dans l'équation antérieurement trouvée, ce qui permet d'exprimer la position horizontale du projectile en fonction du temps.

15:04

📉 Résistance de l'air et équation différentielle pour la composante y

Le paragraphe traite de la résolution de l'équation différentielle pour la composante y du mouvement du projectile, qui inclut la force de gravité et la force de résistance de l'air. La solution est divisée en deux parties : la fonction complémentaire et l'intégrale particulière. Après avoir trouvé la forme générale de la fonction complémentaire, une forme de l'intégrale particulière est proposée en fonction de la force de gravité constante. Les constantes de cette solution sont calculées en substituant les conditions initiales pour la vitesse et la position verticales.

20:07

🌐 Équation cartésienne de la trajectoire avec résistance de l'air

Le paragraphe conclut l'analyse en éliminant la variable temporelle pour exprimer la trajectoire en tant qu'équation cartésienne de y en fonction de x. Cela est réalisé en utilisant la solution pour la composante x pour calculer le temps, puis en le substituant dans l'équation pour la composante y. Le résultat est une équation qui décrit la trajectoire verticale en fonction de la position horizontale, montrant l'effet de la résistance de l'air qui rend la trajectoire moins symétrique et plus inclinée vers le bas à mesure que le projectile avance.

25:07

📉 Forme de la trajectoire affectée par la résistance de l'air

Le dernier paragraphe discute de la forme de la trajectoire du projectile, soulignant comment la présence de la résistance de l'air la rend moins symétrique et plus verticale à mesure que le projectile avance. L'importance de la composante horizontale de la vitesse qui diminue progressivement est mise en évidence, ce qui explique la pente croissante de la trajectoire vers le bas à la fin du mouvement du projectile.

Mindmap

Keywords

💡Trajectoire

La trajectoire fait référence au chemin que suit un objet, tel qu'un projectile, dans l'espace et le temps. Dans la vidéo, l'analyse de la trajectoire est le fil conducteur principal, car elle illustre comment le projectile se déplace sous l'influence des forces telles que la gravité et la résistance de l'air. L'exemple clé est la trajectoire asymétrique du projectile en raison de la force de trainée, qui contraste avec la trajectoire plus classique et symétrique sans résistance de l'air.

💡Force de trainée

La force de trainée est une résistance qui s'oppose au mouvement d'un objet dans un fluide, comme l'air. Elle est décrite dans le script comme une force proportionnelle à la vitesse du projectile, notée -b * v. Cette force est cruciale pour comprendre la trajectoire modifiée du projectile, car elle affecte sa vitesse horizontale et verticale tout au long de son vol.

💡Paramètres

Les paramètres sont des valeurs qui décrivent la configuration initiale d'un système, comme la position et la vitesse d'un projectile au moment de son lancement. Dans le script, les paramètres tels que la position initiale et la vitesse initiale du projectile sont utilisés pour établir les conditions initiales pour les équations de mouvement.

💡Équations paramétriques

Les équations paramétriques sont des équations qui expriment les coordonnées d'un point en fonction d'une variable supplémentaire, souvent le temps. Dans la vidéo, les équations paramétriques x(t) et y(t) sont utilisées pour décrire la position du projectile en fonction du temps, ce qui est essentiel pour comprendre son mouvement dans le plan XY.

💡Équation cartésienne

Une équation cartésienne est une relation entre les coordonnées x et y d'un point dans un plan sans référence au temps. Dans le script, l'objectif est de combiner les équations paramétriques pour obtenir une équation cartésienne, qui décrit la forme de la trajectoire du projectile dans l'espace sans la variable temporelle.

💡Newton's Second Law

La deuxième loi de Newton relie les forces appliquées à un objet à son accélération, exprimée par la formule F=ma. Dans le script, cette loi est utilisée pour établir les équations de mouvement du projectile, en tenant compte de la force de trainée et de la gravité.

💡Système de coordonnées

Un système de coordonnées est un cadre de référence pour décrire la position des objets dans l'espace. Dans le script, le système de coordonnées est défini avec l'origine au point de lancement du projectile, avec les axes x et y représentant les directions horizontale et verticale, respectivement.

💡Vitesse

La vitesse est une mesure de la quantité de changement de position d'un objet par unité de temps. Dans le script, la vitesse du projectile est décomposée en composantes horizontale et verticale, ce qui est essentiel pour résoudre les équations de mouvement dans les deux directions.

💡Force gravitationnelle

La force gravitationnelle est la force attractive exercée par la Terre sur les objets, qui s'exprime dans le script par le terme -mg, où m est la masse du projectile et g est l'accélération due à la gravité. Cette force est constante et垂直e, influençant la composante verticale de l'accélération du projectile.

💡Équations différentielles ordinaires

Les équations différentielles ordinaires sont des équations qui impliquent des dérivées d'une seule variable, généralement le temps. Dans le script, les équations de mouvement du projectile sont des équations différentielles ordinaires qui sont résolues pour trouver les fonctions de position x(t) et y(t).

Highlights

Analyzing the trajectory of a projectile under the influence of air resistance.

Drag force is proportional to the velocity of the projectile.

Parametric equations x(t) and y(t) will be derived to describe the projectile's path.

The trajectory shape is asymmetrical due to air resistance, contrasting with no air resistance cases.

Newton's second law is applied to relate forces to the projectile's motion.

Forces considered include gravity and air resistance, modeled as -b*v.

Vector notation is used to express the forces acting on the projectile.

Component form of the vector equation simplifies the analysis into x and y components.

Two separate differential equations for x and y motion are established.

Solving the x-component equation leads to an exponential function of time.

Initial conditions are applied to determine constants in the x(t) equation.

The y-component equation includes a forcing term due to gravity.

The solution for y(t) includes both a complementary function and a particular integral.

Constants for the y(t) equation are determined using initial velocity and position.

The final parametric equations for x(t) and y(t) are derived.

Elimination of the time variable t results in a Cartesian equation for the trajectory.

The derived Cartesian equation shows the impact of air resistance on the projectile's path.

The trajectory's shape is influenced by the decreasing horizontal velocity due to drag.

Transcripts

play00:00

hello everyone in this video we're going

play00:01

to look at the trajectory of a

play00:03

projectile which is experiencing a drag

play00:05

force or an air resistance force

play00:07

proportional to its own velocity in

play00:09

other words it's going to be filling a

play00:11

drag force f subscript track which is

play00:14

minus some constant which i'm calling b

play00:17

times the velocity v of that projectile

play00:21

okay now in my last video i did a very

play00:23

similar thing in the case of no air

play00:26

resistance which turns out to be

play00:27

mathematically much easier

play00:30

but just as a reminder of what we're

play00:31

going to be doing

play00:33

we'll first find parametric equations x

play00:36

and y as a function of time

play00:39

and then when we've done that we're

play00:41

going to combine them together to get

play00:43

a cartesian equation for the trajectory

play00:46

of this projectile and you can already

play00:48

see from the diagram that i've drawn

play00:50

it's it no longer has this nice

play00:51

symmetrical shape

play00:53

that the trajectory of a particle has

play00:55

when there's no air resistance okay

play00:58

and again just to set up the problem

play01:01

i'm going to say that the coordinate

play01:02

system has its origin at the starting

play01:05

point of the projectile the y-coordinate

play01:08

increases in the vertical direction and

play01:10

the x coordinate increases

play01:12

as you move to the right and the the

play01:16

initial velocity

play01:18

of this projectile is going to be a

play01:19

vector which i'm going to call u

play01:22

okay so there's the setup now let's

play01:24

think about how we're going to actually

play01:25

analyze this so

play01:27

because we've got air resistance we're

play01:30

going to have to think about forces

play01:32

and if we're trying to link forces to

play01:36

well how an object moves we want to be

play01:38

using newton's second law right because

play01:40

newton's second law gives us a

play01:41

connection between force and

play01:43

acceleration okay so let's think about

play01:45

what happens if we apply newton's second

play01:47

law in vector form to this projectile

play01:51

right so

play01:53

the second noise says force equals mass

play01:54

times acceleration well the acceleration

play01:57

if we call the mass m um then

play02:00

the the mass times acceleration time is

play02:03

just m times

play02:04

r double dot where r is the position

play02:07

vector

play02:08

so it's a standard notation for position

play02:09

vector and a double dot means two time

play02:11

derivatives so this r double dot is just

play02:13

the acceleration all right so the other

play02:16

side of this equation needs to be the

play02:17

resultant force now there are two forces

play02:20

acting on this projectile there's

play02:22

gravity acting straight straight down

play02:24

right um

play02:26

the size of that gravitational force is

play02:28

going to be

play02:29

mg so the mass times the gravitational

play02:31

field strength it's going to have a

play02:33

minus sign because it's pointing

play02:34

downwards

play02:35

and i'm going to say that it's in the

play02:37

y-hat direction in other words the unit

play02:39

vector in the y-direction okay

play02:42

now there is also the the drag or the

play02:45

air resistance force

play02:47

which is going to be basically this term

play02:48

that i wrote up there minus b v

play02:51

but using this kind of position uh

play02:53

notation instead of v i'm going to write

play02:55

r dot because the velocity is the first

play02:58

time derivative of the position right so

play03:00

we're going to have a minus b

play03:02

and then r dot there okay

play03:05

so

play03:07

this is a vector equation which makes it

play03:09

a bit tricky um to get a clearer idea of

play03:12

what's what this actually means i'm

play03:14

going to write it out in component form

play03:16

so

play03:17

the r double dot vector is basically x

play03:20

double dot and y double dot right um and

play03:24

then on the right hand side we've got

play03:25

minus mg well the unit vector in the y

play03:28

direction is just 0 1

play03:30

and this r dot vector um is

play03:34

x dot and then y dot okay so i've just

play03:37

kind of written all of the vectors out

play03:39

in terms of their components

play03:42

and this actually gives us two equations

play03:43

right one from the x components and one

play03:45

from the y components right so what we

play03:47

get is the following two equations

play03:50

the

play03:51

x equation is just m x double dot is

play03:54

equal to minus b x dot right because

play03:57

there's just a zero in the x component

play03:59

of that

play04:01

first term on the right hand side and

play04:03

the y equation is going to be m y double

play04:06

dot is equal to

play04:08

minus mg

play04:09

minus b y dot like that okay

play04:13

now i'm going to label these one and two

play04:15

and if we want to know what the

play04:17

trajectory looks like we basically have

play04:18

to solve those two equations to find x

play04:21

as a function of time and y as a

play04:23

function of time okay so let's look at

play04:25

those equations one by one let's start

play04:27

with the x direction so we're going to

play04:29

look at equation one

play04:31

now if we rearrange this into a more

play04:34

standard form for uh for an ordinary

play04:37

differential equation we want to get a

play04:39

zero on one side right and so if i put

play04:42

all the terms on the same side

play04:45

and divide through by the mass we can

play04:47

put that first equation into the form x

play04:49

double dot plus b over m x dot is equal

play04:53

to zero so this is like a kind of

play04:55

standard form for for a second order

play04:58

ordinary differential equation

play05:00

um and we can also use standard methods

play05:02

for this um

play05:03

which

play05:04

essentially involves guessing a solution

play05:08

um

play05:10

the trial solution that we're going to

play05:11

try

play05:12

uh is going to be as follows so we want

play05:14

to try a solution which is proportional

play05:17

to e to the lambda t the reason for that

play05:21

is because we're looking for a function

play05:23

such that when you differentiate it

play05:25

twice and add it to a multiple of the

play05:28

first derivative you get zero and the

play05:31

only types of functions that behave that

play05:34

way are

play05:35

exponentials

play05:37

or signs and causes but you can write

play05:40

exponentials and signs and causes in

play05:42

terms of each other so

play05:44

um you can you can choose either one

play05:46

uh i'm going for for exponentials in

play05:49

this case okay and this lambda is just

play05:51

some constant that we're going to have

play05:53

to solve for so if we substitute this

play05:55

equation e to the lambda 2 sorry this

play05:57

this tri solution e to the lambda t into

play06:00

the differential equation

play06:02

uh well what happens to the x double dot

play06:06

is that

play06:07

you pull down a factor of lambda squared

play06:09

right because each time you

play06:10

differentiate e to the lambda t with

play06:12

respect to t you pull down a factor of

play06:14

lambda and so

play06:16

you get a factor of lambda squared

play06:18

um and then you've still got this e to

play06:20

the lambda t

play06:21

the

play06:22

second term this b over m x dot there's

play06:25

just going to be a single factor of

play06:26

lambda like that so that's going to be

play06:28

lambda um

play06:30

e to the lambda t but we've got to make

play06:32

sure that's been multiplied by b over m

play06:35

right and that is supposed to equal 0.

play06:37

now

play06:38

because um

play06:40

e to the lambda t itself can never be

play06:42

zero we can basically just divide

play06:44

through by that

play06:46

and then we've got a quadratic equation

play06:47

for lambda that we have to solve um

play06:50

if we factorize the resulting quadratic

play06:52

we can take out a lambda and get lambda

play06:54

brackets lambda plus

play06:56

b over m

play06:58

is equal to zero okay now

play07:01

this has two solutions

play07:03

one of them is lambda is 0 from this

play07:05

pre-factor and one of them is lambda is

play07:07

minus b over m from the bracketed term

play07:10

and so because there are two solutions

play07:12

to that equation

play07:14

there are two valid solutions for x as a

play07:17

function of time and the most general

play07:18

solution will be a linear combination of

play07:21

those two solutions all right based on

play07:23

that

play07:24

we can say our x is going to be some

play07:26

constant a

play07:28

times well basically e to the 0 because

play07:31

one of the solutions was lambda

play07:33

equals 0 but e to the 0 is just 1 and so

play07:35

this just becomes a constant a

play07:38

then from our other solution for lambda

play07:40

we get some other constant b

play07:42

times e to the minus b

play07:45

t over m right because this corresponds

play07:47

to lambda being minus b over m um

play07:50

but then the solution itself was e to

play07:52

the lambda t right so we get e to the

play07:54

minus b t over m

play07:56

now um if we differentiate that to find

play08:00

um the

play08:01

velocity or the the x component of the

play08:04

velocity x dot um the a term would

play08:07

disappear you would bring down a factor

play08:09

of minus b over m

play08:10

from the second term and so this is

play08:12

minus small b over m times capital b

play08:16

times e to the minus b t of rem okay

play08:20

now the reason i did this the reason i

play08:22

differentiated that to find the x

play08:24

component of the velocity is that that

play08:26

allows us to apply some initial

play08:28

conditions right we have two initial

play08:30

conditions we know that

play08:32

the projectile is starting from the

play08:34

origin so in other words x is zero when

play08:37

t is zero but we also know that the

play08:39

initial velocity is this u vector and so

play08:42

we have an initial condition on the

play08:44

speed in both the x and y directions as

play08:47

well okay so

play08:49

if we apply those boundary conditions

play08:51

let's think about the velocity one first

play08:53

so x dot when time when the time is zero

play08:57

is just the x component of the u vector

play08:59

right so x dot of zero is u subscript x

play09:02

now if we use this expression for x dot

play09:05

um

play09:06

and substitute in t is zero and x dot is

play09:08

equal to ux what do we get well we find

play09:12

u x is just minus small b over m times

play09:15

capital b and then this exponential term

play09:18

becomes one because it becomes e to the

play09:20

zero when t is 0 right

play09:23

so we get this equation which we can

play09:25

just rearrange and solve for capital b

play09:28

so we find that that b

play09:30

is equal to

play09:31

minus m

play09:33

use

play09:33

u subscript x divided by small b like

play09:37

that okay so we found one of the

play09:38

constants

play09:40

to find the constant a we can use our

play09:42

other boundary condition which is that x

play09:44

when t is zero is equal to zero right so

play09:48

if we do that substitute that into the

play09:50

first equation x as a function of time

play09:53

you get 0 equals a

play09:56

plus

play09:57

b and then you would have an e to the 0

play09:58

here but again e to the 0 is 1 so a plus

play10:01

b is 0 which means a has to be minus b

play10:05

in other words a has to just be

play10:07

m

play10:08

u subscript x over small b like that so

play10:11

same thing but just it's positive

play10:13

instead of negative okay

play10:15

um

play10:16

and so we found the constants capital a

play10:18

and capital b

play10:20

all we need to do to find x as a

play10:21

function of time then is substitute

play10:23

those back in to our expression for x as

play10:26

a function of time

play10:27

if we do that we get x is equal to where

play10:31

we've got this m

play10:33

u subscript x over b

play10:35

this is going to be a common factor in

play10:37

both the a term and the b term right

play10:39

because remember a and b are the same

play10:42

just give or take a minus sign so it can

play10:44

actually take out as a factor this mu x

play10:47

over b

play10:48

and then i'm going to have 1 minus e to

play10:51

the minus b t over m in brackets there

play10:54

okay so that's just come from

play10:55

substituting a and b into

play10:58

that expression that we derived earlier

play11:00

by solving the differential equation so

play11:03

there we go we now know what x is as a

play11:06

function of time

play11:08

so let's go through a similar procedure

play11:11

and solve for y as a function of time

play11:13

okay

play11:14

so our differential equation

play11:16

um

play11:17

that tells us how y behaves with

play11:19

equation two um

play11:22

if we rearrange that equation into a

play11:24

standard form

play11:25

well the left hand side will be the same

play11:27

pretty much as the x equation you would

play11:29

get y double dot plus b over m

play11:32

um

play11:33

y dot

play11:35

um but then on the right hand side we

play11:37

would have an extra term left over which

play11:40

is just minus g okay um so this we can

play11:44

kind of think of this as like a forcing

play11:45

term

play11:47

um

play11:48

and

play11:49

because of this minus g there is

play11:51

something else we've got to think about

play11:52

when we're solving this differential

play11:54

equation

play11:55

so again i'm not entering this video to

play11:57

be a detailed uh

play11:59

introduction to how to solve ordinary

play12:01

differential equations so i'll go

play12:03

through this fairly quickly basically

play12:04

the solution consists of two parts the

play12:06

complementary function and the

play12:08

particular integral now the

play12:10

complementary function

play12:12

is basically what you would get if you

play12:14

solved this equation but with a zero on

play12:17

the right hand side instead of a minus g

play12:19

okay so

play12:21

because of the fact that

play12:23

the left-hand side of this equation has

play12:25

exactly the same form as the x equation

play12:29

we can immediately say that the

play12:30

complementary function which i'm going

play12:32

to call y subscript cf has to be of the

play12:35

same form

play12:36

a um plus

play12:38

b e to the minus b t over m so these a

play12:42

and b's

play12:43

the the this a and this b are not

play12:45

necessarily the same as this a and this

play12:47

b um

play12:49

but there you go it's going to have the

play12:50

same form right

play12:52

but the difference is we've got to add

play12:54

on

play12:55

another contribution which is this thing

play12:56

called the particular integral now the

play12:58

way to find the particular integral is

play13:00

to basically make

play13:02

make a guess or an informed guess based

play13:05

on the form of what you've got on the

play13:07

right hand side of your equation

play13:10

and um and also well what you've got on

play13:12

the left side of your equation as well

play13:14

now

play13:15

because the right hand side of the

play13:16

equation in other words the forcing term

play13:18

is just a constant

play13:20

and because on the left hand side i have

play13:23

a first derivative and a second

play13:25

derivative i'm going to

play13:27

guess a a form for the particular

play13:30

integral as

play13:31

basically being a second order

play13:33

polynomial right so i'm going to call it

play13:34

alpha t squared

play13:36

plus

play13:37

beta t right because if you

play13:40

differentiate um

play13:42

a second order or quadratic polynomial

play13:45

twice

play13:46

you get a constant which is the same

play13:48

form as what we've got on the right hand

play13:50

side there right so that's where that's

play13:52

coming from i'm not bothering to put a

play13:54

constant term gamma there because

play13:57

um

play13:58

well you don't you don't have y

play14:00

appearing directly on the left hand side

play14:03

of this differential equation right so

play14:04

if you differentiate this expression y

play14:08

particular integral the gamma would just

play14:10

disappear and so

play14:11

we know that it's it's just going to be

play14:13

zero in the end anyway okay so i'm just

play14:16

trying this general form

play14:19

of the the particular integral um so all

play14:21

we've got to do having made that

play14:23

informed guess as to the functional form

play14:25

of the particular integral is take that

play14:27

and substitute it back in now

play14:29

if we

play14:30

differentiate this twice

play14:32

the

play14:33

first term

play14:34

will become

play14:37

just 2 alpha right because if we

play14:38

differentiate it once we get 2 out for t

play14:40

differentiate again you get 2 alpha the

play14:42

second term would disappear

play14:44

right because if you differentiate once

play14:45

you get beta and then again and it

play14:48

disappears because it's a constant and

play14:50

so

play14:50

the y double dot for the particular

play14:52

integral would just be

play14:56

2 alpha okay then for the y dot term

play14:59

well we get b plus b over m um

play15:03

and then we've got that two alpha t from

play15:05

differentiating the first term once and

play15:07

then we also get plus b over m uh times

play15:11

beta which comes from differentiating

play15:13

the second term once okay and all of

play15:15

that stuff is supposed to be equal to

play15:18

minus g

play15:20

so

play15:20

then what we want to do is just compare

play15:23

coefficients

play15:25

of the different types of term on the

play15:27

left hand side and the right hand side

play15:29

we can immediately see that alpha

play15:31

actually has to be zero because

play15:33

the there is a t term here b over m

play15:35

times two alpha t but there is no t term

play15:38

on the right hand side right and so

play15:41

the only way to

play15:43

eliminate the t dependence on the left

play15:44

hand side is for alpha to actually be

play15:46

zero right so we can immediately say

play15:48

that alpha is supposed to be zero

play15:50

um

play15:52

and then we can compare the constant

play15:54

terms right we um we find that well the

play15:57

constant term on the left hand side is 2

play15:59

alpha plus b over m times beta the

play16:02

constant term on the right hand side is

play16:03

minus g we already know that the alpha

play16:06

term is actually zero and so

play16:08

we're just equating this b over m times

play16:11

beta with this minus g now if those are

play16:14

going to be equal what that means is

play16:16

that beta

play16:17

is supposed to be

play16:20

minus mg over b and there we go we found

play16:24

that alpha is zero beta is minus mg over

play16:26

b

play16:27

okay

play16:28

so

play16:29

putting all of that together um

play16:31

our overall solution for y

play16:34

um is going to be well the complementary

play16:36

function plus the particular integral

play16:39

okay complementary function was a plus

play16:43

b e to the minus b t over m

play16:46

um then we've got to add the particular

play16:48

integral

play16:50

if we substitute these values of alpha

play16:52

and beta that we just found back into

play16:55

that equation for the particular

play16:57

integral alpha t squared plus b to t

play17:00

we are just left with

play17:01

minus

play17:03

mg t over b right from that from that b

play17:06

to term there okay so this is the

play17:08

general solution for for y um and again

play17:11

so that we can apply boundary conditions

play17:13

i'm also going to differentiate that

play17:14

once to find y dot right so if we do

play17:18

that

play17:19

as we did with the

play17:21

the x um

play17:22

earlier on

play17:24

back up there

play17:26

the

play17:27

the first part of this will just

play17:28

differentiate to give us well minus b

play17:30

over m times capital b

play17:33

e to the minus b t over m then this

play17:38

particular integral part

play17:40

will just turn into a constant because

play17:42

well that's a linear term and so we get

play17:44

a minus mg over b there

play17:49

so let's apply our boundary conditions

play17:51

and find uh what the values of this a

play17:55

and this b are okay so we know that the

play17:58

initial component of velocity in the y

play18:00

direction in other words uh y dot

play18:04

at t equals zero is just the y component

play18:06

of the u vector in other words u

play18:08

subscript y okay so if we take our

play18:11

expression for y dot substitute t equals

play18:13

zero in

play18:14

and see what happens well we get um

play18:18

u y

play18:19

uh is supposed to be equal to

play18:22

uh minus b over m times capital b

play18:27

minus mg over b again because e to the

play18:31

zero is one and so that term just

play18:33

becomes one okay now if we rearrange

play18:36

this um to make b the subject we find

play18:39

that b is supposed to be

play18:42

minus m over b and then we're going to

play18:44

have a bracketed term which will be uy

play18:48

plus

play18:50

mg over b right so just rearrange the

play18:51

previous line to make capital b the

play18:53

subject so we know b

play18:56

let's then apply our other boundary

play18:58

condition which is that it starts at the

play19:00

origin again so y the y coordinate at t

play19:02

equals zero is simply zero

play19:05

if we substitute that in um we find that

play19:08

so we're substituting that into this

play19:11

equation for y as a function of time

play19:14

if y is 0 we just get 0 equals then

play19:17

there is going to be an a nothing

play19:19

changes there the b term capital b term

play19:22

is just going to be b because e to the 0

play19:24

is 1. this linear term disappears

play19:26

because we're substituting t equals 0.

play19:27

so again a plus b is 0. so a is just the

play19:30

same as b but with a positive sign

play19:34

instead of a negative sign so a

play19:36

is going to be

play19:37

m over small b times u y

play19:41

plus mg over b so now we've found our

play19:44

constants capital a and capital b

play19:47

um putting all of that together

play19:49

we can then get y as a function of time

play19:52

y is going to be

play19:54

again there's this common factor of m

play19:56

over b

play19:57

in brackets u y plus

play20:00

mg over b

play20:02

um

play20:03

and then um well we get a

play20:06

we've kind of factored out this term

play20:09

if you look at the form of this

play20:10

expression up here

play20:12

for y as a function of time

play20:14

the first term is just a which is

play20:16

exactly that so if i factored that out

play20:18

we need to have a one in brackets here

play20:21

and then from the b term we get minus e

play20:24

to the minus b t

play20:26

over m okay so we've got that bit and

play20:29

then

play20:30

we've got our linear part at the end

play20:32

minus

play20:33

t

play20:34

over b

play20:35

which didn't depend on the constants

play20:36

capital a and capital b so there we go

play20:38

now we've got a parametric equation for

play20:41

x as a function of time up at the top

play20:43

and a parametric equation for y as a

play20:45

function of time at the bottom there so

play20:48

the last thing we want to do is try to

play20:50

eliminate t uh the time variable and

play20:53

just express y as a function of x

play20:55

because that will tell us the um the

play20:58

shape or the cartesian equation

play21:01

of the trajectory okay now

play21:04

the way i'm going to do that is that

play21:06

notice that t only appears once in

play21:08

equation one up at the top here right so

play21:10

we can actually

play21:12

fairly easily rearrange that top

play21:14

equation involving x to make t the

play21:16

subject right so let's do that take

play21:18

equation one

play21:20

um multiply by b over mu x so the left

play21:23

hand side is going to become b x over m

play21:27

u subscript x

play21:29

then we're just left with this one minus

play21:31

e to the

play21:32

minus b t over m on the right hand side

play21:34

okay

play21:36

if we do one minus both sides

play21:39

we get e to the minus b t

play21:42

over m

play21:43

is just one minus

play21:45

b x over m

play21:47

u x okay

play21:49

and so

play21:50

we would have to take logs of both sides

play21:53

right to to get t on its own so if we

play21:55

take logs of both sides

play21:58

and then multiply up by this factor

play22:01

that's in front of t right which is the

play22:03

the minus b over m

play22:05

we are going to get that t is minus um

play22:09

m over b

play22:11

all right we've got to flip that factor

play22:12

upside down because we're basically

play22:13

dividing by b over m uh then we get the

play22:16

natural log

play22:18

of the entire right hand side so minus m

play22:21

over b

play22:22

ln of 1 minus bx over m u subscript x

play22:28

okay and there we go now we've expressed

play22:31

the time t

play22:33

in terms of the x coordinate

play22:36

and so

play22:36

if we're trying to eliminate that time

play22:38

all we've got to do is take this

play22:40

expression for t and substitute it into

play22:42

equation 2 at the top there for y right

play22:46

so let me just write that down so we're

play22:48

basically substituting that

play22:50

into equation 2

play22:52

and what's going to happen well we get

play22:55

y equals we've still got this first bit

play22:58

um m over b

play22:59

u y

play23:00

plus

play23:02

m g over b

play23:04

um

play23:05

now

play23:06

we have this bracket to term 1 minus e

play23:08

to the minus bt over m but we know that

play23:11

that's the same from uh

play23:14

this

play23:15

intermediate step here we know that that

play23:17

entire bracketed term 1 minus e to the

play23:19

minus b 2 over m is the same as bx over

play23:22

mu subscript x so here i can just put a

play23:27

b x over

play23:29

m

play23:30

u subscript x like that okay

play23:33

now

play23:34

we've still got to deal with that linear

play23:36

term at the end we get minus mg over b

play23:40

and then we just substitute directly

play23:42

this expression for t

play23:44

and so we just put here minus m over b

play23:46

and then

play23:48

ln of 1 minus

play23:50

bx

play23:51

over

play23:52

mu subscript x

play23:55

okay so we are very nearly there we've

play23:57

just got to simplify this as much as we

play24:00

can there's no time dependence left in

play24:01

here which is good um

play24:04

so

play24:05

first thing i'm going to point out is

play24:07

that we've got an m over b here and a b

play24:09

over m there so those are going to

play24:11

cancel so i'm going to cross those out

play24:14

um

play24:15

and so what are we left with well we've

play24:17

got this u y

play24:19

plus

play24:20

mg

play24:21

over b

play24:23

then that whole thing is going to be

play24:24

over u x

play24:26

and then we've still got that x on the

play24:27

top of the fraction there so there's

play24:28

going to be an x there

play24:31

now for the second term we've got a

play24:33

minus and a minus so it's going to end

play24:34

up being positive we've got

play24:37

m squared

play24:38

g

play24:39

over b squared

play24:40

and then we've got this same uh log term

play24:43

right so

play24:45

ln of

play24:47

1 minus

play24:48

bx over mu x

play24:50

and

play24:52

i guess

play24:53

personally i would want to remove this

play24:55

fraction within a fraction we can do

play24:57

that just by multiplying up by b so our

play25:00

final cartesian equation for the

play25:02

trajectory of a projectile with um

play25:05

linear drag

play25:06

is going to be as follows so y equals

play25:09

b

play25:10

times u subscript y plus

play25:12

mg divided by

play25:16

b

play25:16

u subscript x because we had to times

play25:19

everything in that first fraction by b

play25:21

to remove the fraction within a fraction

play25:23

that is all multiplied by x

play25:25

and then well nothing's changed about

play25:28

that second term so i'm just going to

play25:30

copy and paste that and put it there

play25:33

okay

play25:34

um

play25:35

so notice it doesn't have this nice

play25:36

symmetrical shape that the trajectory

play25:39

had when there was no air resistance

play25:42

basically this log term

play25:44

at the end here makes the trajectory

play25:46

kind of start falling off

play25:48

or kind of moving downwards quite

play25:50

quickly as it reaches the end of its

play25:52

trajectory

play25:53

which makes sense because basically

play25:54

what's happened is that the

play25:56

um

play25:57

horizontal component of the uh the

play26:01

velocity is getting smaller and smaller

play26:03

um because of because of the the air

play26:05

resistance right so the trajectory kind

play26:06

of gets more and more close to being

play26:08

vertical as the as the projectile

play26:10

reaches the end of its motion

Rate This

5.0 / 5 (0 votes)

Related Tags
PhysiqueTrajectoireProjectileRésistance de l'airMécaniqueÉquations paramétriquesÉquations différentiellesAnalyse de mouvementForce de dragModélisation
Do you need a summary in English?