Definisi Grup dan Contohnya

Randipopo
26 Apr 202007:58

Summary

TLDRThis video script discusses the concept of groups in algebraic structures, a fundamental topic in abstract algebra. It defines a group as a set that satisfies four conditions: closure, associativity, identity, and invertibility. Examples of groups include the set of integers under addition and the set of integers modulo 4 under addition. The script also provides a non-example of a group, illustrating the importance of each condition. It invites viewers to engage with questions in the comments section and looks forward to future discussions.

Takeaways

  • 🔢 A group in algebraic structures is defined by four criteria: closure, associativity, identity, and invertibility.
  • 🧩 Closure means that for any two elements 'a' and 'b' in the group, their combination (like 'a*b') must also be in the group.
  • 🔗 Associativity ensures that for any elements 'a', 'b', and 'c', the equation (a*b)*c = a*(b*c) holds true.
  • 🌀 Identity refers to the presence of an element that, when combined with any group element, leaves that element unchanged.
  • ↩️ Invertibility states that every element in the group has an inverse, such that combining the element with its inverse results in the identity element.
  • 🔄 The set of integers (Z) under the operation of addition is an example of a group, satisfying all four group criteria.
  • 🔄 The set Z4 under the operation of addition modulo 4 also forms a group, demonstrating closure, associativity, identity (0), and invertibility.
  • 🚫 The set of integers under the operation of subtraction does not form a group because it fails the associativity criterion.
  • 📚 Examples of other groups include the set of real numbers (R) under addition, and the set of non-zero real numbers under multiplication.
  • ❌ The set of integers under multiplication does not form a group because not all elements have inverses (e.g., the inverse of 2 is 1/2, which is not an integer).

Q & A

  • What is a group in the context of algebraic structures?

    -A group is one of the fundamental concepts in algebraic structures, defined as a set with an operation that satisfies four conditions: closure, associativity, identity, and invertibility.

  • What does it mean for a group to be 'closed'?

    -A group is 'closed' if for any two elements a and b in the group, the result of their operation (a * b) is also in the group.

  • What is the associative property in the context of groups?

    -The associative property means that for any elements a, b, and c in the group, the equation (a * b) * c = a * (b * c) holds true.

  • What is the identity element in a group?

    -The identity element in a group is an element that, when combined with any other element in the group using the group operation, leaves that element unchanged.

  • What does it mean for every element in a group to have an inverse?

    -Every element in a group has an inverse if for every element a in the group, there exists an element b such that a * b = b * a = identity element.

  • Can you provide an example of a group from the script?

    -Yes, the set of integers (Z) under the operation of addition is given as an example of a group in the script.

  • Why is the set of integers modulo 4 (Z4) under addition considered a group?

    -Z4 under addition is considered a group because it satisfies all four group properties: closure, associativity, identity (0 is the identity element), and every element has an inverse.

  • What is an example of a set that is not a group as per the script?

    -The set of integers under the operation of subtraction is given as an example of a non-group because it does not satisfy the associative property.

  • What are some other examples of groups mentioned in the script?

    -Other examples of groups mentioned include the set of real numbers (R) under addition, the set of non-zero real numbers under multiplication, and the set of 2x2 matrices with integer entries under matrix addition.

  • Why is the set of integers under multiplication not considered a group?

    -The set of integers under multiplication is not considered a group because not every element has an inverse (for example, the integer 2 does not have an integer multiplicative inverse).

  • What is the significance of understanding groups in algebraic structures?

    -Understanding groups in algebraic structures is significant because groups are fundamental in studying symmetries and transformations, which are essential in various areas of mathematics and its applications.

Outlines

00:00

📚 Introduction to Groups in Algebra

The speaker begins by introducing the concept of a group in algebra, a fundamental topic in the study of algebraic structures. They define a group as a set that satisfies four conditions: closure, associativity, identity, and invertibility. The explanation includes the closure property, which means that for any two elements a and b in the group, the result of their operation (denoted by *) must also be in the group. Associativity is demonstrated through the operation of elements a, b, and c, where a * (b * c) equals (a * b) * c. The identity element is introduced as an element that, when combined with any other element in the group through the operation, leaves that element unchanged. Lastly, the invertibility condition is explained, stating that for every element in the group, there must be an inverse element such that their operation results in the identity element. The integers under addition (denoted by Z) are given as an example of a group that meets all these criteria.

05:04

🔍 Examples and Non-Examples of Groups

In this section, the speaker provides further examples of groups, including the set of real numbers (R) under addition, the set of non-zero real numbers under multiplication, and the set of 2x2 matrices with integer entries under matrix addition. They also present a counterexample to illustrate a set that does not form a group. Specifically, they discuss the set of integers (Z) under subtraction, explaining why it fails to meet the criteria for a group. The closure property is satisfied, but the operation of subtraction is not associative, which is demonstrated through a simple arithmetic example. The speaker concludes by inviting viewers to ask questions about groups or algebraic structures in the comment section and looks forward to the next video.

Mindmap

Keywords

💡Group

A 'group' in the context of algebraic structures is a set equipped with a binary operation that combines any two of its elements to form a third element in the set. The video defines a group as a set that satisfies four conditions: closure, associativity, identity, and invertibility. The concept is central to the video's theme as it sets the stage for discussing algebraic structures. For example, the video discusses the set of integers under addition as a group, illustrating closure by stating that the sum of any two integers is also an integer.

💡Closure

Closure refers to the property of a group where the result of the operation on any two elements within the group is also an element of the group. The video explains this concept by stating that for every element 'a' and 'b' in the group, the operation 'a * b' must result in an element that is also in the group. This is exemplified with the set of integers, where adding any two integers will always result in another integer.

💡Associativity

Associativity is a property that ensures the way in which the operation is performed on three or more elements does not depend on the grouping of the elements. In the video, this is demonstrated by stating that for any elements 'a', 'b', and 'c' in the group, the equation '(a * b) * c' equals 'a * (b * c)'. This property is crucial for the group structure as it allows operations to be performed without ambiguity.

💡Identity

An identity element is a special element in a group that, when combined with any other element through the group's operation, leaves that element unchanged. The video clarifies this by stating that every group must have an identity element. For the group of integers under addition, the identity element is zero, as adding zero to any integer results in the integer itself.

💡Invertibility

Invertibility, also known as the existence of inverses, is a property where every element in a group has an inverse such that when combined with the original element through the group's operation, the result is the identity element. The video explains this by stating that for every element 'a' in the group, there exists an element 'a_inv' such that 'a * a_inv' equals the identity element. This is illustrated with the integers, where the inverse of any integer 'a' is '-a', since 'a + (-a)' equals zero.

💡Integers (Z)

The set of integers, denoted by 'Z', is used in the video as an example of a group under the operation of addition. The video demonstrates that the integers meet all the criteria for a group: closure (the sum of any two integers is an integer), associativity (addition is associative), identity (zero is the additive identity), and invertibility (every integer has an additive inverse, which is its negative).

💡Modular Addition

Modular addition is a binary operation defined on the set of integers under a certain modulus. The video uses the set Z4 (integers modulo 4) to illustrate this concept, showing that the operation of addition modulo 4 satisfies the group properties. For example, adding any two elements of Z4 under modular addition will result in another element of Z4, demonstrating closure.

💡Non-Group

A non-group is a set with an operation that does not satisfy all the group properties. The video provides an example of the set of integers with subtraction, explaining that while closure and identity are satisfied, associativity is not (since '(a - b) - c' does not necessarily equal 'a - (b - c)'), and not every element has an inverse for subtraction, making it a non-group.

💡Real Numbers (R)

The set of real numbers, denoted by 'R', is mentioned in the video as an example of a group under the operation of addition. The video implies that the real numbers, like integers, form a group under addition because they satisfy closure, associativity, have an identity element (zero), and every real number has an additive inverse.

💡Matrix

The video briefly mentions matrices as an example of a structure that can form a group under certain operations. Specifically, the set of 2x2 matrices with integer entries forms a group under matrix addition. This is an example of a more complex algebraic structure that still adheres to the group properties, showcasing the broad applicability of the group concept.

Highlights

Definition of a group in algebraic structures

A group is denoted by an asterisk and must satisfy four conditions

Closure property in groups

Associative property within groups

Identity element requirement for groups

Existence of inverse elements in a group

Example of a group: Integers under addition

Integers under addition satisfy the closure property

Associativity of addition for integers

Zero as the identity element in integer addition

Every integer has an additive inverse

Example of a group: Integers modulo 4 under addition

Closure, associativity, and identity in integers modulo 4

Inverses in integers modulo 4 addition

Real numbers under addition as a group

Non-zero real numbers under multiplication as a group

2x2 matrices with integer entries under matrix addition as a group

Integers under subtraction do not form a group due to non-associativity

Integers under multiplication do not form a group due to the lack of multiplicative inverses for all elements

Invitation for questions on groups and algebraic structures in the comments

Transcripts

play00:00

kau tak tahu salam matematika Pada

play00:08

kesempatan kali ini saya akan membahas

play00:10

tentang definisi grup dan

play00:11

contoh-contohnya pada matakuliah

play00:13

struktur aljabar ingin lengkapnya simak

play00:17

video berikut ini oke group adalah salah

play00:26

satu materi dasar dalam mempelajari

play00:28

matakuliah struktur aljabar kita dia

play00:31

definisi suatu grup yang disimbolkan

play00:36

oleh bintang adalah sebuah bintang ia

play00:43

memenuhi empat syarat berikut yang

play00:45

pertama adalah tertutup yang kedua

play00:48

asosiatif yang ketiga identitas dan yang

play00:53

keempat invers

play00:55

Hai sahabat yang pertama yakni tertutup

play00:59

maksudnya adalah setiap elemen adige dan

play01:03

beige maka akan berakibat a jika

play01:07

dioperasikan dengan b akan berada di

play01:11

syarat yang berikutnya yakni asosiatif

play01:13

maksudnya adalah setiap elemen

play01:18

a-b-c-d-e-f-g-a maka akan berlaku a

play01:21

bintang b bintang c = a bintang b

play01:26

Simpang C syarat yang ketika ia

play01:29

identitas artinya adalah sebuah grup

play01:33

harus memiliki cepat berbuah

play01:36

elemen-elemen disini maksudnya adalah

play01:39

setiap kita ambil elemen adige maka akan

play01:43

berakibat a bintang oke sama dengan aa3w

play01:49

bintang A1 dengan A300 yang keempat

play01:54

yakni invest maksudnya adalah setiap

play01:56

elemen

play02:11

elemen identitas saya tampilkan sebuah

play02:14

contoh dari grup contohnya adalah

play02:20

himpunan bilangan bulat Z terhadap

play02:22

operasi penambahan buktinya

play02:26

Hai yang pertama adalah zat tertutup

play02:30

terhadap operasi penambahan karena

play02:33

setiap kita ambil elemen zb6 NZ ditambah

play02:39

B pastilah Element Z atau bilangan bulat

play02:43

yang kedua operasi tambah kita sudah

play02:47

tahu akan berlaku asosiatif pada

play02:49

himpunan bilangan bulat untuk sehat yang

play02:53

ketiga

play02:56

Hai terdapat sebuah elemen identitas

play02:57

pada operasi tambah pada himpunan

play03:01

bilangan bulat tentunya yaitu nol

play03:04

maksudnya adalah setiap elemen pada

play03:06

bilangan bulat jika ditambahkan dengan

play03:08

nol maka akan menghasilkan bilangan itu

play03:11

sendiri dan untuk yang secara terakhir

play03:16

setiap elemen pada himpunan bilangan

play03:19

bulat operasi tambah pasti milikin Bos

play03:22

setiap kita ambil Wah maka akan selalu

play03:26

ada negatif a-yong merupakan ciri khas

play03:29

dari a untuk contoh berikutnya

play03:34

Hai hiburan zenpad 0123 terhadap operasi

play03:38

penambahan modul 4 akan kita tunjukkan

play03:41

bahwasanya ini merupakan contoh dari

play03:44

grup Perhatikan tabel berikut Apakah

play03:50

tertutup Iya berapa Iya karena setiap

play03:57

hasil dari menambahkan Z4 dengan operasi

play04:02

modul 4 akan menghasilkan elemen-elemen

play04:04

yang juga berada di setempat Apakah

play04:08

asosiatif siapanya Iya karena operasi

play04:12

tambah pada himpunan bilangan bulat

play04:15

mobil Oke pasti bersifat asosiatif yang

play04:19

berikutnya Apakah milik identitas

play04:22

jawabannya iya perhatikan 00 merupakan

play04:27

elemen dari Z4 sedangkan semua

play04:31

bilangan-bilangan pada tempat jika

play04:34

ditambahkan

play04:34

10 akan menghasilkan bilangan itu

play04:36

sendiri lalu ditambah 001 kita merasa

play04:40

berhak satu dan lain-lainnya kemudian

play04:44

Apakah setiap elemen memiliki invers

play04:46

jawabannya adalah Iya lepas dari 0013

play04:52

karena 13022 karena dua tambah dua

play04:59

adalah roh dari setiap elemen memiliki

play05:04

invers ada banyak sekali contoh-contoh

play05:07

dari grup antara lain himpunan bilangan

play05:10

real R terhadap operasi penambahan

play05:13

kemudian himpunan bilangan riil er tak

play05:16

nol terhadap operasi perkalian atau bisa

play05:19

juga matriks himpunan matriks 2 * dua

play05:21

dengan entry bilangan bulat terhadap

play05:23

operasi penambahan matriks dan

play05:26

sebagainya

play05:28

Hai berikut akan saya tampilkan sebuah

play05:30

contoh himpunan dengan operasi biner

play05:31

tertentu yang bukan merupakan grup

play05:35

Hai contohnya adalah himpunan bilangan

play05:39

bulat set terhadap operasi pengurangan

play05:43

Mengapa bukan Bro Apakah tertutup

play05:46

siapanya Iya kita tahu bahwasanya

play05:49

bilangan bulat jika dikurangi bilangan

play05:52

bulat hasilnya tetap berada di bilangan

play05:55

bulat yang berikutnya apa asosiatif

play05:58

jawabanya tidak ambil sebuah kontes yang

play06:01

paling 54 dan 35 dikurangin Pak kemudian

play06:07

dikurangi tiga tidak sama hasilnya

play06:09

dengan lima dikurangi tempat tidurnya

play06:12

tiga dari sana dapat dikatakan operasi

play06:17

biner pada bulan tersebut tidak berlaku

play06:20

asosiatif sehingga contoh berikut

play06:23

bukanlah sebuah grup contoh bukan grup

play06:27

berikutnya himpunan bilangan bulat dan

play06:32

terhadap operasi perkalian kita cek satu

play06:34

persatu

play06:35

akan tertutup jawabannya Iya kenapa ya

play06:40

Coba kalikan bilangan bulat dengan

play06:43

bilangan gula pasti hasilnya selalu

play06:46

bilangan bulat yang kedua asosiatif kita

play06:50

sudah tahu bahwasanya perkalian pada

play06:52

bilangan bulat berlaku sifat asosiatif

play06:55

yang ketiga apakah memiliki elemen

play06:58

identitas jawabannya Iya apa itu satu

play07:02

semua bilangan bulat jika dikalikan

play07:05

dengan satu akan menghasilkan bilangan

play07:07

bulat tersendiri untuk yang keempat

play07:10

syarat infus yang tidak terpenuhi kenapa

play07:12

ambil kontras simple yakni 22 merupakan

play07:17

bilangan bulat invers perkalian pada

play07:19

bilangan bulat dua adalah setengah kita

play07:24

tahu setengah bukanlah bilangan bulat

play07:28

dari sana tidak terpenuhi syarat grup

play07:32

sehingga contoh berikut bukanlah flu

play07:35

Hai kamu Oke terima kasih sudah

play07:38

menyaksikan video ini sampai tuntas jika

play07:41

ada pertanyaan tentang grup maupun

play07:43

tentang mata kuliah struktur aljabar

play07:45

silakan tulis di kolom komentar berikut

play07:47

ini sampai ketemu di video berikutnya

play07:50

salam Atika

Rate This

5.0 / 5 (0 votes)

関連タグ
Algebraic StructuresGroup TheoryMathematicsEducational VideoAbstract AlgebraMath TutorialGroup ExamplesMathematical ConceptsLearning ResourceAlgebraic Groups
英語で要約が必要ですか?