REPRESENTATION OF FUNCTIONS ┃Grade 11 General Mathematics

SIR JERIC REY
15 Sept 202105:09

Summary

TLDRIn this video, different ways of representing functions and relations are explored, including mapping diagrams, tables of values, and graphs. The video explains how mapping diagrams can show if a relation is a function, highlighting key points like how each domain element should correspond to only one range element. It also discusses how a table of values can confirm whether a relation is a function by ensuring no x-value maps to multiple y-values. Lastly, the vertical line test is introduced to determine if a graph represents a function, with practical examples to illustrate the concepts.

Takeaways

  • 😀 Functions can be represented in different ways, including ordered pairs, mapping diagrams, tables of values, and graphs.
  • 😀 In a mapping diagram, arrows represent the relationship between x values (domain) and y values (range).
  • 😀 A mapping diagram represents a function if each element in the domain is paired with only one value in the range.
  • 😀 If an x value is paired with more than one y value in a mapping diagram, it is not a function but a relation.
  • 😀 A table of values has two rows: one for the x values (domain) and the other for the y values (range).
  • 😀 A table of values represents a function if each x value corresponds to only one y value.
  • 😀 In a graph, the vertical line test is used to determine if a relation is a function.
  • 😀 A graph represents a function if any vertical line drawn intersects the graph at most once.
  • 😀 If a vertical line intersects a graph more than once, the relation is not a function.
  • 😀 The vertical line test helps easily distinguish between a function and a relation when using graphs.
  • 😀 If a mapping diagram or table shows that each x value is paired with one and only one y value, it is confirmed as a function.

Q & A

  • What are the common ways to represent a function or relation?

    -Functions and relations can be represented using sets of ordered pairs, mapping diagrams, tables of values, and graphs.

  • What is a mapping diagram and how is it used to represent functions?

    -A mapping diagram uses arrows to show the relationship between the x values (domain) and y values (range). It helps to visually display how each element in the domain is paired with an element in the range.

  • How do you know if a mapping diagram represents a function?

    -A mapping diagram represents a function if each element of the domain is paired with exactly one value in the range. There cannot be any x value that corresponds to more than one y value.

  • In the example provided, why is the first mapping diagram a function?

    -The first mapping diagram is a function because each x value (negative 2, 2, 4, 5, 6) is paired with exactly one y value, even though some x values share the same y value.

  • Why is the second mapping diagram not a function?

    -The second mapping diagram is not a function because the x values negative 1 and 1 are each paired with more than one y value (negative 1 is paired with 3 and 4, and 1 is paired with 1 and 2).

  • What is a table of values, and how does it represent functions?

    -A table of values is a two-row table where the first row contains the x values (domain) and the second row contains the y values (range). It represents a function if each x value is paired with only one y value.

  • How can a table of values be used to identify a function?

    -A table of values identifies a function if no x value is paired with more than one y value. In the given example, the x values 1, 2, 3, and 4 are paired with y values 2, 4, 6, and 8 respectively, confirming it as a function.

  • What is the vertical line test, and how is it used to determine if a graph represents a function?

    -The vertical line test is a method used to determine if a graph represents a function. A graph represents a function if and only if any vertical line drawn on the graph intersects it at most once.

  • Why does the first graph pass the vertical line test?

    -The first graph passes the vertical line test because each vertical line intersects the graph at most once, which indicates it is a function.

  • Why does the second graph fail the vertical line test?

    -The second graph fails the vertical line test because some vertical lines intersect the graph more than once, which means it is not a function.

Outlines

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Mindmap

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Keywords

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Highlights

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora

Transcripts

plate

Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.

Mejorar ahora
Rate This

5.0 / 5 (0 votes)

Etiquetas Relacionadas
FunctionsRelationsMapping DiagramsTable of ValuesGraphingVertical Line TestMath ConceptsEducationalSTEM LearningMathematicsFunctions Representation
¿Necesitas un resumen en inglés?