SANGAT JELAS! Rumus TRANSLASI dan DILATASI. TRANSFORMASI FUNGSI. Matematika Kelas 12 [SMA]
Summary
TLDRThis video explains four types of function transformations: translation, dilation, reflection, and rotation. The focus is on translation, where a function y = f(x) is shifted horizontally by 'a' and vertically by 'b', resulting in y = f(x - a) + b. A positive 'a' shifts right, while a negative 'a' shifts left; a positive 'b' shifts up, and a negative 'b' shifts down. The video also introduces dilation, which enlarges or shrinks a function. If y = f(x) is dilated with center O and scale factor k, the transformed function becomes y = k * f(x/k).
Takeaways
- 📐 There are four types of function transformations: translation, dilation, reflection, and rotation.
- ➡️ Translation or shifting of a function occurs when the function is moved horizontally or vertically.
- 🧮 For a function y = f(x) translated by AB, the new function is y = f(x - a) + b.
- 🔄 In translation, 'a' represents the horizontal shift. Positive 'a' means shifting to the right, and negative 'a' means shifting to the left.
- ⬆️ 'b' represents the vertical shift. Positive 'b' shifts the function upward, and negative 'b' shifts it downward.
- 📏 Dilation involves resizing the function, either enlarging or reducing it.
- 🔍 When a function y = f(x) undergoes dilation with center O and scale factor k, the new function is y = k * f(x/k).
- 🎯 O is the center of dilation, and 'k' is the scaling factor.
- ✍️ Memorizing these formulas is essential, as they will be used in problem-solving later.
- 📹 Additional videos will cover more applications and problem-solving involving these transformations.
Q & A
What are the four types of function transformations mentioned in the transcript?
-The four types of function transformations mentioned are translation, dilation, reflection, and rotation.
What is the meaning of 'translation' in the context of function transformation?
-Translation refers to shifting a function horizontally or vertically. It can be represented as y = f(x - a) + b, where 'a' is the horizontal shift and 'b' is the vertical shift.
How does the value of 'a' affect the function in a translation?
-The value of 'a' determines the horizontal shift: if 'a' is positive, the function shifts to the right; if 'a' is negative, the function shifts to the left.
How does the value of 'b' affect the function in a translation?
-The value of 'b' determines the vertical shift: if 'b' is positive, the function shifts upward; if 'b' is negative, the function shifts downward.
What does dilation refer to in function transformation?
-Dilation refers to enlarging or shrinking a function. It involves scaling the function based on a factor 'k' from a center point, often the origin (O).
What happens to a function when it is dilated with a scale factor of k?
-When a function y = f(x) is dilated with a scale factor of k, the transformed function becomes y = k * f(x/k).
What is the center point of dilation in the context provided?
-The center point of dilation in the provided context is the origin, denoted as point O.
What is the significance of the factor 'k' in dilation?
-The factor 'k' determines the scale of dilation: if k > 1, the function is enlarged; if 0 < k < 1, the function is shrunk.
How do you apply the dilation formula to a function?
-To apply dilation, you take the original function y = f(x) and transform it using the formula y = k * f(x/k), where 'k' is the scale factor.
What is the expected follow-up to this video lesson on transformations?
-The follow-up will include exercises and applications of these formulas in future videos.
Outlines
Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.
Mejorar ahoraMindmap
Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.
Mejorar ahoraKeywords
Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.
Mejorar ahoraHighlights
Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.
Mejorar ahoraTranscripts
Esta sección está disponible solo para usuarios con suscripción. Por favor, mejora tu plan para acceder a esta parte.
Mejorar ahoraVer Más Videos Relacionados
Applying First Principles to x² (2 of 2: What do we discover?)
Average vs Instantaneous Rates of Change
How to find the domain and the range of a function given its graph (example) | Khan Academy
How to Graph Lines in Slope Intercept Form (y=mx+b)
Lec 25 C - Slope of a Quadratic Function
A Tale of Three Functions | Intro to Limits Part I
5.0 / 5 (0 votes)