Biomimicry in action | Janine Benyus

TED
6 Aug 200920:15

Summary

TLDRThe speaker introduces biomimicry, a field that draws inspiration from nature's genius to solve human challenges. From mimicking the kingfisher to reduce train noise, to using shark skin patterns for antibacterial surfaces, and harnessing fog for water collection, biomimicry offers sustainable solutions. It encourages learning from nature's efficiency, like solar cells modeled after leaves or water filtration inspired by aquaporins. The talk highlights the potential of biomimicry to innovate responsibly and live in harmony with our environment, urging us to consult AskNature.org for insights.

Takeaways

  • 🌟 Biomimicry is a discipline that studies nature's genius to inform design and engineering solutions.
  • 🌱 We live in a competent universe where every organism and ecosystem is a source of inspiration and knowledge.
  • 🌿 Biomimics are like apprentices to nature, learning from its functional designs to solve human problems.
  • 🚄 The bullet train was redesigned based on the kingfisher's diving technique to reduce noise and increase efficiency.
  • 🦈 Sharklet Technologies mimicked shark skin patterns to create surfaces that repel bacteria in hospitals.
  • 🌊 A beetle in the Namibian desert inspired a method to collect water from fog, which could be applied to building design.
  • 💡 CO2 is seen as a building block by organisms, and Calera is using this concept to create eco-friendly cement.
  • 🌞 A new type of solar cell inspired by leaves can self-assemble and is rechargeable, representing a leap in renewable energy technology.
  • 🌊 Aquaporin technology, inspired by the water filtration method in red blood cells, is being developed for desalination.
  • 🏗️ Algorithms based on how trees and bones reform along stress lines are being used to create lightweight and strong structures.
  • 🌳 Nature operates on nanoscale principles, and we can learn from its safe use of nanoparticles for various applications.
  • 🐝 Social insects' energy-efficient behaviors are being studied to optimize 'smart grid' technology in energy management.
  • 🌳 A synthetic tree concept inspired by capillary action in real trees could move water in buildings without pumps.
  • 🐋 Humpback whales' flippers inspired wind turbine designs that operate more efficiently in slow winds.
  • 🐬 The Amazon electric eel's ability to generate electricity without self-harm could inspire safer electrical insulation methods.
  • 🏙️ Biomimicry is being applied to urban planning, with the aim of creating cities that provide ecosystem services as effectively as natural systems.
  • 🌐 AskNature.org is a resource that organizes biological information by design and engineering function to inspire innovation.

Q & A

  • What is the main idea presented in the transcript?

    -The main idea is the concept of biomimicry, which is a discipline that learns from nature's genius to solve human problems and improve our interaction with the environment.

  • Why does the speaker mention the example of a competent universe?

    -The speaker uses the term 'competent universe' to emphasize the idea that the natural world is highly efficient and capable, and that we can learn from it to live more sustainably.

  • What is the significance of the spring season in the context of the talk?

    -Spring is used as an example of nature's timing and coordination without human intervention, highlighting the complexity and efficiency of natural processes.

  • What is the role of biomimics in the field of biomimicry?

    -Biomimics are individuals who study nature to learn design principles and apply them to human innovation, essentially becoming 'apprentices' to nature.

  • How did the engineer at J.R. West solve the problem of noise in the bullet train?

    -The engineer studied the kingfisher's ability to dive into water without creating a splash and applied a similar design to the train, which reduced noise and increased efficiency.

  • What is the significance of the Galapagos Shark's skin in the context of the script?

    -The Galapagos Shark's skin has a pattern that repels bacteria, which inspired a company to develop surfaces for hospitals that prevent bacterial adhesion without chemicals.

  • What is the Namibian desert beetle's adaptation for water collection, and how is it being applied to human technology?

    -The beetle collects water from fog using the bumps on its wing covers. This adaptation inspired the development of building coatings that can gather water from fog more efficiently than current methods.

  • How does the concept of biomimicry relate to the construction of buildings and cities?

    -Biomimicry can be applied to the design of buildings and cities by emulating nature's efficient use of materials, energy, and ecosystem services to create sustainable and resilient urban environments.

  • What is the purpose of the website AskNature.org mentioned in the transcript?

    -AskNature.org is a resource designed to organize biological information by design and engineering function, allowing inventors to consult nature's solutions to various problems.

  • How does the speaker suggest we can learn from nature to create a sustainable future?

    -The speaker suggests that by studying and applying nature's design principles, we can innovate in a way that is more sustainable, efficient, and harmonious with the environment.

  • What is the role of biomimicry in addressing current environmental challenges?

    -Biomimicry plays a crucial role in addressing environmental challenges by providing solutions that are inspired by nature's time-tested methods, promoting sustainability and reducing our ecological footprint.

Outlines

00:00

🌱 Embracing the Genius of Nature

The speaker introduces the concept of biomimicry, a field that studies nature's genius to inform design and innovation. They emphasize the inherent competence of the universe and the brilliance of our planet, advocating for a reconnection with the natural world's intelligence. The speaker's daily life is enriched by observing organisms and ecosystems, reminding us of the cyclical and reliable phenomena of nature, such as spring's arrival. A personal anecdote involving a child's fascination with a wasp's nest illustrates the common yet mistaken belief that humans are the pinnacle of creation. The narrative challenges this notion, highlighting that nature has been solving problems long before human invention, and biomimicry seeks to learn from these ancient solutions.

05:00

🚄 Innovations Inspired by Nature's Strategies

This section presents various examples of how biomimicry has led to significant advancements. An engineer at J.R. West applied the diving technique of kingfishers to reduce the sonic boom of bullet trains, increasing speed and efficiency. The natural anti-bacterial properties of the Galapagos shark inspired Sharklet Technologies to create surfaces that prevent bacterial adhesion in hospitals. The Namibian desert beetle's fog-harvesting technique is being studied for potential architectural applications. Calera, a cement manufacturing company, uses CO2 as a building block in cement, inspired by coral reefs, to reduce carbon emissions. Other innovations include solar cells mimicking leaves, desalination membranes based on aquaporins, and lightweight structures inspired by trees and bones. The speaker underscores the importance of learning from nature's blueprints rather than exploiting its organisms.

10:00

🌿 Mimicking Nature's Efficiency and Sustainability

The speaker discusses the efficiency of nature in using one material for multiple functions, as seen in the beetle's use of chitin, and the need for humans to minimize material use in our inventions. Nature operates at the nanoscale, and there is much to learn about safety in nanotechnology from natural examples. The energy efficiency of organisms is contrasted with our energy grids, with social insects providing insights into smart grid technology. The synthetic tree project at Cornell aims to mimic capillary action for water movement without pumps. The electric eel's ability to generate electricity without self-harm raises questions about biological insulation. The humpback whale's flippers inspired a wind turbine design that reduces drag and allows operation in lower wind speeds. MIT's new radio chip, inspired by the cochlear, uses less power than traditional chips. The speaker's consulting company, Biomimicry Guild, collaborates with architects to develop ecological performance standards for city planning, emphasizing the need for biomimicry in urban design.

15:01

🌐 AskNature.org: A Resource for Biomimetic Innovation

The speaker concludes by introducing AskNature.org, a website designed to organize biological information by design and engineering function, making it accessible to inventors worldwide. The goal is to facilitate a direct line of inquiry from nature's solutions to human challenges, supported by contributions from the Encyclopedia of Life. This resource aims to reconnect humanity with the wisdom of the natural world, encouraging us to live in harmony with the planet and learn from the sustainable practices of organisms that have thrived for billions of years.

Mindmap

Keywords

💡Biomimicry

Biomimicry is a field of science that studies nature's models and processes to solve human problems and create sustainable designs. It is central to the video's theme, emphasizing the idea that we can learn from the natural world's genius to innovate and live sustainably on our planet. The script mentions biomimicry as a discipline where the speaker 'lives' and 'learns from geniuses', highlighting examples such as the bullet train inspired by the kingfisher and the shark skin pattern used to repel bacteria.

💡Competent Universe

The term 'competent universe' refers to the idea that the universe operates with a level of efficiency and intelligence that humans can learn from. It is used in the script to convey the message that we live in a universe where everything has a purpose and functions optimally, and we can apply these principles to our own lives and technologies.

💡Genius of Nature

In the context of the video, 'genius of nature' is a concept that underscores the inherent intelligence and efficiency found in natural organisms and ecosystems. The script uses this term to highlight the idea that nature has already solved many of the problems we face, and we can look to it for inspiration and solutions.

💡Ecosystems

Ecosystems are communities of living organisms interacting with their physical environment. The script refers to ecosystems as entities that 'know how to live here gracefully on this planet', illustrating the balance and harmony that can be achieved through natural processes, and which we should strive to emulate in our own designs and lifestyles.

💡Spring

In the script, 'spring' is used metaphorically to describe the annual renewal of life and the natural world's ability to organize and execute complex processes without human-like coordination. It serves as an example of the intricate and efficient systems that biomimicry seeks to understand and apply.

💡Bacterial Repellence

Bacterial repellence is the ability of a surface to prevent the adhesion and growth of bacteria. The script discusses how the Galapagos Shark's skin pattern naturally repels bacteria, a principle that has been adapted for use in hospital surfaces to reduce infections, showcasing biomimicry in action.

💡Aquaporins

Aquaporins are protein channels that facilitate the movement of water molecules across cell membranes. The script mentions aquaporins as an example of nature's elegant solutions to water filtration, which have inspired the development of more efficient desalination membranes.

💡CO2 Sequestration

CO2 sequestration refers to the long-term capture and storage of carbon dioxide to mitigate climate change. The script discusses how organisms like coral use CO2 as a building block, inspiring a company to create cement that sequesters CO2 instead of emitting it, demonstrating a sustainable approach to construction materials.

💡Nanoparticles

Nanoparticles are tiny particles measured in nanometers. The script touches on the use of nanoparticles in nature, such as those produced by sulfur-reducing bacteria, and how nature's methods can inform the safe development of nanotechnology, emphasizing the importance of learning from nature's own nano-scale processes.

💡Smart Grid

A smart grid is an electrical grid that uses technology to improve reliability, demand response, and efficiency. The script references the smart grid and how the behavior of social insects like ants and bees is being studied to optimize energy use, showing how biomimicry can contribute to more intelligent energy management.

💡Ecological Performance Standards

Ecological Performance Standards are metrics used to measure how well human-made systems mimic the beneficial functions of natural ecosystems. The script discusses the creation of such standards for cities, aiming to ensure that urban environments provide ecosystem services at least as effectively as the natural systems they replace.

Highlights

Biomimicry is a discipline that learns from nature's genius to inform design and innovation.

We live in a competent universe surrounded by genius, and biomimicry seeks to harness this.

Biomimicry is about remembering that organisms have been solving problems for billions of years.

The bullet train was redesigned to mimic the kingfisher's ability to dive without creating a splash.

Sharklet Technologies uses shark skin patterns to prevent bacterial adhesion in hospitals.

A Namibian desert beetle inspired a method for buildings to collect water from fog.

Calera uses CO2 as a building block in cement, inspired by coral reefs.

A new solar cell design is based on how leaves self-assemble and gather sunlight.

Aquaporin technology mimics red blood cells to desalinate water without membranes clogging.

G.M. Opel applied an algorithm from nature to create a lightweight bionic car skeleton.

Beetles use chitin for multiple functions, inspiring material efficiency in human inventions.

Nature's nanotechnology uses embedded nanoparticles safely, a lesson for human design.

Social insects' energy-efficient behaviors are consulted for smart grid technology.

A synthetic tree concept draws from capillary action to move water without pumps.

The Amazon electric eel's ability to generate electricity safely is a subject of study.

Whale flippers' scalloped edges reduce drag, inspiring wind turbine design.

MIT's new radio chip, inspired by the cochlear, uses less power for communication.

Biomimicry Guild and HOK Architects are developing Ecological Performance Standards for city planning.

AskNature.org aims to organize biological information by design and engineering function for inventors.

Transcripts

play00:18

If I could reveal anything

play00:22

that is hidden from us,

play00:24

at least in modern cultures,

play00:28

it would be to reveal something that we've forgotten,

play00:32

that we used to know

play00:34

as well as we knew our own names.

play00:38

And that is that we live in a competent universe,

play00:42

that we are part of a brilliant planet,

play00:45

and that we are surrounded by genius.

play00:49

Biomimicry is a new discipline

play00:52

that tries to learn from those geniuses,

play00:54

and take advice from them, design advice.

play00:58

That's where I live,

play01:01

and it's my university as well.

play01:04

I'm surrounded by genius. I cannot help but

play01:08

remember the organisms and the ecosystems

play01:13

that know how to live here gracefully on this planet.

play01:18

This is what I would tell you to remember

play01:20

if you ever forget this again.

play01:23

Remember this.

play01:25

This is what happens every year.

play01:29

This is what keeps its promise.

play01:32

While we're doing bailouts, this is what happened.

play01:35

Spring.

play01:37

Imagine designing spring.

play01:42

Imagine that orchestration.

play01:44

You think TED is hard to organize. (Laughter) Right?

play01:48

Imagine, and if you haven't done this in a while, do.

play01:53

Imagine the timing, the coordination,

play01:57

all without top-down laws,

play02:01

or policies, or climate change protocols.

play02:04

This happens every year.

play02:07

There is lots of showing off.

play02:11

There is lots of love in the air.

play02:16

There's lots of grand openings.

play02:21

And the organisms, I promise you,

play02:23

have all of their priorities in order.

play02:27

I have this neighbor that keeps me in touch with this,

play02:31

because he's living, usually on his back,

play02:33

looking up at those grasses.

play02:36

And one time he came up to me --

play02:38

he was about seven or eight years old -- he came up to me.

play02:40

And there was a wasp's nest

play02:42

that I had let grow in my yard,

play02:44

right outside my door.

play02:47

And most people knock them down when they're small.

play02:49

But it was fascinating to me,

play02:51

because I was looking at this sort of fine Italian end papers.

play02:54

And he came up to me and he knocked.

play02:56

He would come every day with something to show me.

play02:59

And like, knock like a woodpecker on my door until I opened it up.

play03:02

And he asked me

play03:06

how I had made the house for those wasps,

play03:13

because he had never seen one this big.

play03:16

And I told him, "You know, Cody,

play03:19

the wasps actually made that."

play03:21

And we looked at it together.

play03:23

And I could see why he thought,

play03:27

you know -- it was so beautifully done.

play03:29

It was so architectural. It was so precise.

play03:32

But it occurred to me, how in his small life

play03:36

had he already believed the myth

play03:40

that if something was that well done,

play03:44

that we must have done it.

play03:46

How did he not know --

play03:49

it's what we've all forgotten --

play03:52

that we're not the first ones to build.

play03:55

We're not the first ones to process cellulose.

play03:58

We're not the first ones to make paper. We're not the first ones

play04:00

to try to optimize packing space,

play04:03

or to waterproof, or to try to heat and cool a structure.

play04:06

We're not the first ones to build houses for our young.

play04:12

What's happening now, in this field called biomimicry,

play04:16

is that people are beginning to remember

play04:19

that organisms, other organisms,

play04:23

the rest of the natural world,

play04:25

are doing things very similar to what we need to do.

play04:29

But in fact they are doing them in a way

play04:31

that have allowed them to live gracefully on this planet

play04:33

for billions of years.

play04:36

So these people, biomimics,

play04:39

are nature's apprentices.

play04:41

And they're focusing on function.

play04:43

What I'd like to do is show you a few of the things

play04:46

that they're learning.

play04:49

They have asked themselves,

play04:51

"What if, every time I started to invent something,

play04:55

I asked, 'How would nature solve this?'"

play04:58

And here is what they're learning.

play05:00

This is an amazing picture from a Czech photographer named Jack Hedley.

play05:03

This is a story about an engineer at J.R. West.

play05:06

They're the people who make the bullet train.

play05:08

It was called the bullet train

play05:10

because it was rounded in front,

play05:12

but every time it went into a tunnel

play05:14

it would build up a pressure wave,

play05:16

and then it would create like a sonic boom when it exited.

play05:19

So the engineer's boss said,

play05:21

"Find a way to quiet this train."

play05:24

He happened to be a birder.

play05:26

He went to the equivalent of an Audubon Society meeting.

play05:30

And he studied -- there was a film about king fishers.

play05:32

And he thought to himself, "They go from one density of medium,

play05:35

the air, into another density of medium, water,

play05:38

without a splash. Look at this picture.

play05:41

Without a splash, so they can see the fish.

play05:44

And he thought, "What if we do this?"

play05:47

Quieted the train.

play05:50

Made it go 10 percent faster on 15 percent less electricity.

play05:55

How does nature repel bacteria?

play05:57

We're not the first ones to have to protect ourselves

play06:00

from some bacteria.

play06:02

Turns out that -- this is a Galapagos Shark.

play06:06

It has no bacteria on its surface, no fouling on its surface, no barnacles.

play06:11

And it's not because it goes fast.

play06:13

It actually basks. It's a slow-moving shark.

play06:16

So how does it keep its body free of bacteria build-up?

play06:19

It doesn't do it with a chemical.

play06:21

It does it, it turns out, with the same denticles

play06:23

that you had on Speedo bathing suits,

play06:27

that broke all those records in the Olympics,

play06:29

but it's a particular kind of pattern.

play06:31

And that pattern, the architecture of that pattern

play06:34

on its skin denticles

play06:37

keep bacteria from being able to land and adhere.

play06:41

There is a company called Sharklet Technologies

play06:43

that's now putting this on the surfaces in hospitals

play06:47

to keep bacteria from landing,

play06:49

which is better than dousing it with anti-bacterials or harsh cleansers

play06:55

that many, many organisms are now becoming drug resistant.

play06:59

Hospital-acquired infections are now killing

play07:01

more people every year in the United States

play07:04

than die from AIDS or cancer or car accidents combined --

play07:09

about 100,000.

play07:11

This is a little critter that's in the Namibian desert.

play07:14

It has no fresh water that it's able to drink,

play07:17

but it drinks water out of fog.

play07:20

It's got bumps on the back of its wing covers.

play07:23

And those bumps act like a magnet for water.

play07:26

They have water-loving tips, and waxy sides.

play07:29

And the fog comes in and it builds up on the tips.

play07:32

And it goes down the sides and goes into the critter's mouth.

play07:35

There is actually a scientist here at Oxford

play07:38

who studied this, Andrew Parker.

play07:40

And now kinetic and architectural firms like Grimshaw

play07:44

are starting to look at this as a way

play07:46

of coating buildings

play07:49

so that they gather water from the fog.

play07:51

10 times better than our fog-catching nets.

play07:56

CO2 as a building block.

play07:58

Organisms don't think of CO2 as a poison.

play08:01

Plants and organisms that make shells,

play08:03

coral, think of it as a building block.

play08:06

There is now a cement manufacturing company

play08:09

starting in the United States called Calera.

play08:12

They've borrowed the recipe from the coral reef,

play08:15

and they're using CO2 as a building block

play08:18

in cement, in concrete.

play08:20

Instead of -- cement usually

play08:22

emits a ton of CO2 for every ton of cement.

play08:25

Now it's reversing that equation,

play08:27

and actually sequestering half a ton of CO2

play08:30

thanks to the recipe from the coral.

play08:32

None of these are using the organisms.

play08:34

They're really only using the blueprints or the recipes

play08:36

from the organisms.

play08:39

How does nature gather the sun's energy?

play08:42

This is a new kind of solar cell

play08:44

that's based on how a leaf works.

play08:46

It's self-assembling.

play08:48

It can be put down on any substrate whatsoever.

play08:50

It's extremely inexpensive

play08:52

and rechargeable every five years.

play08:55

It's actually a company a company that I'm involved in called OneSun,

play08:58

with Paul Hawken.

play09:00

There are many many ways that nature filters water

play09:04

that takes salt out of water.

play09:07

We take water and push it against a membrane.

play09:10

And then we wonder why the membrane clogs

play09:12

and why it takes so much electricity.

play09:14

Nature does something much more elegant.

play09:16

And it's in every cell.

play09:18

Every red blood cell of your body right now

play09:21

has these hourglass-shaped pores

play09:23

called aquaporins.

play09:25

They actually export water molecules through.

play09:28

It's kind of a forward osmosis.

play09:30

They export water molecules through,

play09:32

and leave solutes on the other side.

play09:35

A company called Aquaporin is starting to make desalination

play09:38

membranes mimicking this technology.

play09:42

Trees and bones are constantly reforming themselves

play09:47

along lines of stress.

play09:49

This algorithm has been put into a software program

play09:53

that's now being used to make bridges lightweight,

play09:55

to make building beams lightweight.

play09:58

Actually G.M. Opel used it

play10:00

to create that skeleton you see,

play10:04

in what's called their bionic car.

play10:07

It lightweighted that skeleton using a minimum amount of material,

play10:10

as an organism must,

play10:13

for the maximum amount of strength.

play10:17

This beetle, unlike this chip bag here,

play10:21

this beetle uses one material, chitin.

play10:24

And it finds many many ways

play10:26

to put many functions into it.

play10:28

It's waterproof.

play10:30

It's strong and resilient.

play10:32

It's breathable. It creates color through structure.

play10:36

Whereas that chip bag has about seven layers to do all of those things.

play10:40

One of our major inventions

play10:43

that we need to be able to do

play10:45

to come even close to what these organisms can do

play10:47

is to find a way

play10:51

to minimize the amount of material, the kind of material we use,

play10:54

and to add design to it.

play10:56

We use five polymers in the natural world

play10:59

to do everything that you see.

play11:01

In our world we use about 350 polymers

play11:05

to make all this.

play11:10

Nature is nano.

play11:12

Nanotechnology, nanoparticles, you hear a lot of worry about this.

play11:17

Loose nanoparticles. What is really interesting to me

play11:21

is that not many people have been asking,

play11:24

"How can we consult nature about how to make nanotechnology safe?"

play11:29

Nature has been doing that for a long time.

play11:31

Embedding nanoparticles in a material for instance, always.

play11:35

In fact, sulfur-reducing bacteria,

play11:37

as part of their synthesis,

play11:40

they will emit, as a byproduct,

play11:42

nanoparticles into the water.

play11:44

But then right after that, they emit a protein

play11:46

that actually gathers and aggregates those nanoparticles

play11:49

so that they fall out of solution.

play11:54

Energy use. Organisms sip energy,

play11:59

because they have to work or barter for every single bit that they get.

play12:04

And one of the largest fields right now,

play12:07

in the world of energy grids,

play12:09

you hear about the smart grid.

play12:11

One of the largest consultants are the social insects.

play12:15

Swarm technology. There is a company called Regen.

play12:18

They are looking at how ants and bees

play12:21

find their food and their flowers

play12:24

in the most effective way

play12:26

as a whole hive.

play12:28

And they're having appliances in your home

play12:31

talk to one another through that algorithm,

play12:34

and determine how to minimize peak power use.

play12:40

There's a group of scientists in Cornell

play12:43

that are making what they call a synthetic tree,

play12:45

because they are saying, "There is no pump at the bottom of a tree."

play12:49

It's capillary action and transpiration pulls

play12:53

water up, a drop at a time,

play12:55

pulling it, releasing it from a leaf and pulling it up through the roots.

play13:00

And they're creating -- you can think of it as a kind of wallpaper.

play13:03

They're thinking about putting it on the insides of buildings

play13:07

to move water up without pumps.

play13:13

Amazon electric eel -- incredibly endangered,

play13:15

some of these species --

play13:17

create 600 volts of electricity

play13:21

with the chemicals that are in your body.

play13:24

Even more interesting to me is that

play13:26

600 volts doesn't fry it.

play13:29

You know we use PVC, and we sheath wires

play13:32

with PVC for insulation.

play13:34

These organisms, how are they insulating

play13:36

against their own electric charge?

play13:39

These are some questions that we've yet to ask.

play13:42

Here's a wind turbine manufacturer that went to a whale.

play13:46

Humpback whale has scalloped edges on its flippers.

play13:50

And those scalloped edges

play13:52

play with flow in such a way

play13:55

that is reduces drag by 32 percent.

play13:58

These wind turbines can rotate in incredibly slow windspeeds, as a result.

play14:04

MIT just has a new radio chip

play14:07

that uses far less power than our chips.

play14:11

And it's based on the cochlear of your ear,

play14:14

able to pick up internet, wireless, television signals

play14:19

and radio signals, in the same chip.

play14:22

Finally, on an ecosystem scale.

play14:26

At Biomimicry Guild, which is my consulting company,

play14:29

we work with HOK Architects.

play14:31

We're looking at building whole cities

play14:35

in their planning department.

play14:37

And what we're saying is that,

play14:39

shouldn't our cities do at least as well,

play14:42

in terms of ecosystem services,

play14:44

as the native systems that they replace?

play14:47

So we're creating something called Ecological Performance Standards

play14:51

that hold cities to this higher bar.

play14:55

The question is -- biomimicry is an incredibly powerful

play14:58

way to innovate.

play15:01

The question I would ask is, "What's worth solving?"

play15:04

If you haven't seen this, it's pretty amazing.

play15:06

Dr. Adam Neiman.

play15:09

This is a depiction of

play15:11

all of the water on Earth

play15:13

in relation to the volume of the Earth --

play15:15

all the ice, all the fresh water, all the sea water --

play15:18

and all the atmosphere that we can breathe, in relation to the volume of the Earth.

play15:22

And inside those balls

play15:24

life, over 3.8 billion years,

play15:28

has made a lush, livable place for us.

play15:33

And we are in a long, long line

play15:36

of organisms

play15:38

to come to this planet and ask ourselves,

play15:41

"How can we live here gracefully over the long haul?"

play15:45

How can we do what life has learned to do?

play15:50

Which is to create conditions conducive to life.

play15:54

Now in order to do this, the design challenge

play15:58

of our century, I think,

play16:01

we need a way to remind ourselves of those geniuses,

play16:06

and to somehow meet them again.

play16:09

One of the big ideas, one of the big projects

play16:11

I've been honored to work on

play16:13

is a new website. And I would encourage you all to please go to it.

play16:16

It's called AskNature.org.

play16:19

And what we're trying to do, in a TEDesque way,

play16:22

is to organize all biological information

play16:24

by design and engineering function.

play16:28

And we're working with EOL, Encyclopedia of Life,

play16:31

Ed Wilson's TED wish.

play16:33

And he's gathering all biological information

play16:36

on one website.

play16:38

And the scientists who are contributing to EOL are answering a question,

play16:41

"What can we learn from this organism?"

play16:44

And that information will go into AskNature.org.

play16:48

And hopefully, any inventor, anywhere in the world,

play16:51

will be able, in the moment of creation,

play16:54

to type in, "How does nature remove salt from water?"

play16:59

And up will come mangroves, and sea turtles

play17:02

and your own kidneys.

play17:04

And we'll begin to

play17:07

be able to

play17:09

do as Cody does,

play17:11

and actually be in touch

play17:14

with these incredible models,

play17:17

these elders that have been here

play17:19

far, far longer than we have.

play17:21

And hopefully, with their help,

play17:23

we'll learn how to live on this Earth,

play17:26

and on this home that is ours, but not ours alone.

play17:30

Thank you very much.

play17:32

(Applause)

Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
BiomimicrySustainabilityNature's WisdomInnovationEcosystem ServicesDesign InspirationGenius of NatureEcological StandardsTED TalkAskNature
Benötigen Sie eine Zusammenfassung auf Englisch?