The Speed, Distance and Time trick [No Ads]

Xcelerate Math
5 Jul 201905:00

Summary

TLDRThis lesson teaches the fundamental rules of speed, distance, and time using a simple DST triangle. By breaking down the formulas, learners can easily calculate distance (speed × time), speed (distance ÷ time), and time (distance ÷ speed). Through practical examples, such as a car traveling at 100 km/h or a snail moving at 10 mm/s, students learn how to apply these rules to real-life scenarios. The video also challenges viewers with more complex problems, like a rocket’s journey to the moon, reinforcing the importance of mastering these basic principles in everyday life.

Takeaways

  • 😀 The speed, distance, and time rules can be easily remembered using the DST triangle.
  • 😀 The DST triangle helps visualize the relationships between distance (D), speed (S), and time (T).
  • 😀 The distance rule is: Distance = Speed × Time.
  • 😀 The speed rule is: Speed = Distance ÷ Time.
  • 😀 The time rule is: Time = Distance ÷ Speed.
  • 😀 The DST triangle simplifies solving real-life problems involving speed, distance, and time.
  • 😀 An example demonstrates how a car traveling at 100 km/h for 4 hours covers 400 km.
  • 😀 Another example shows an express train traveling 1500 km in 3 hours at a speed of 500 km/h.
  • 😀 A snail's speed can be calculated by dividing its distance of 80 mm by a speed of 10 mm/s, resulting in a time of 8 seconds.
  • 😀 A challenge problem calculates a snake's speed as 15 m/s when it attacks from 3 meters away in 0.2 seconds.
  • 😀 A rocket traveling from Earth to the Moon at 7 km/s would take 15.25 hours for the journey after converting the time from seconds to hours.

Q & A

  • What does the DST triangle represent in the context of this lesson?

    -The DST triangle represents the relationship between Distance (D), Speed (S), and Time (T). It is used as a visual tool to help remember the formulas for calculating distance, speed, and time.

  • How can we calculate distance using the DST triangle?

    -To calculate distance, multiply speed (S) by time (T). The formula is: Distance = Speed × Time.

  • What formula is used to find speed using the DST triangle?

    -To find speed, divide distance (D) by time (T). The formula is: Speed = Distance ÷ Time.

  • How can we calculate time using the DST triangle?

    -To calculate time, divide distance (D) by speed (S). The formula is: Time = Distance ÷ Speed.

  • What is the distance traveled by a car moving at 100 km/h for 4 hours?

    -Using the distance formula (Distance = Speed × Time), the car travels 100 km/h × 4 hours = 400 km.

  • How do we calculate the speed of an express train that covers 1500 km in 3 hours?

    -Using the speed formula (Speed = Distance ÷ Time), the speed is 1500 km ÷ 3 hours = 500 km/h.

  • How much time does it take for a snail to move 80 mm at 10 mm/s?

    -Using the time formula (Time = Distance ÷ Speed), the time is 80 mm ÷ 10 mm/s = 8 seconds.

  • What is the speed of a snake that can attack in 0.2 seconds from 3 meters away?

    -Using the speed formula (Speed = Distance ÷ Time), the snake's speed is 3 meters ÷ 0.2 seconds = 15 m/s.

  • How long would it take a rocket traveling at 7 km/s to reach the moon from Earth, which is 384,000 km away?

    -Using the time formula (Time = Distance ÷ Speed), the time is 384,000 km ÷ 7 km/s = 54,914 seconds. Converting this to hours, the journey would take approximately 15.25 hours.

  • Why do we need to convert seconds to minutes and minutes to hours when calculating the rocket's travel time?

    -We convert seconds to minutes and minutes to hours to express the travel time in a more understandable unit (hours), as 54,914 seconds is a large, unwieldy number.

Outlines

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Mindmap

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Keywords

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Highlights

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen

Transcripts

plate

Dieser Bereich ist nur für Premium-Benutzer verfügbar. Bitte führen Sie ein Upgrade durch, um auf diesen Abschnitt zuzugreifen.

Upgrade durchführen
Rate This

5.0 / 5 (0 votes)

Ähnliche Tags
Math LessonSpeed Time DistanceDST TriangleEducational VideoDistance FormulaSpeed CalculationTime CalculationReal Life ExamplesSTEM LearningMath Basics
Benötigen Sie eine Zusammenfassung auf Englisch?