How Carbon Nanotubes Will Change the World

Real Engineering
8 May 202119:35

Summary

TLDRThis video explores the discovery and potential of carbon nanotubes, a material with unprecedented strength and conductivity. Invented by Sumio Iijima in 1991, these tiny straws of carbon have the potential to revolutionize technology, from medical devices to space elevators. The script delves into their chemical makeup, their production via chemical vapor deposition, and their current applications, including as conductive materials and in biomedical implants. Despite challenges in manufacturing, advancements in growing longer and purer nanotubes are paving the way for future innovations.

Takeaways

  • 🌟 Carbon nanotubes were first created by Sumio Iijima in 1991, marking a significant advancement in material science.
  • 🔬 These nanostructures exhibit exceptional strength, conductivity, and biocompatibility, with a tensile strength 100 times greater than steel.
  • 📚 Carbon's unique ability to form various molecular structures due to its electron configuration is crucial for understanding carbon nanotubes.
  • 💎 The strength of carbon materials like diamonds and graphite is determined by the type of hybridization (sp3 for diamonds and sp2 for graphite).
  • 📐 Graphene, a single layer of hexagonally arranged carbon atoms, is incredibly strong due to its sp2 hybridization and the resulting sigma bonds.
  • 🚀 Carbon nanotubes, with their hexagonal structure similar to graphene, are extremely strong and lightweight, making them a candidate for revolutionary applications like space elevators.
  • 🏭 The industrial production of carbon nanotubes is primarily done through chemical vapor deposition, a process that involves the decomposition of a carbon-containing gas and precipitation onto a catalyst.
  • 🔬 Recent advancements in catalyst technology have allowed for the growth of carbon nanotube 'forests' up to 15 cm in length, a significant increase from previous methods.
  • 🔌 Carbon nanotubes have high electrical conductivity, which could potentially revolutionize power transmission lines and other applications requiring high conductivity.
  • 🧬 Their biocompatibility makes carbon nanotubes a promising material for biomedical applications, including neural interfaces and implants.
  • 🛠 The versatility of carbon nanotubes extends to their potential use in various industries, from aerospace and automotive to wearable technology and medical devices.

Q & A

  • What significant discovery did Sumio Iijima make in 1991?

    -Sumio Iijima discovered carbon nanotubes, a material with the strongest tensile strength known to man at the time, by applying a current across two graphite rods and creating a spark that vaporized the tip of the anode rod.

  • Why are carbon nanotubes considered a revolutionary material in engineering?

    -Carbon nanotubes are considered revolutionary due to their exceptional tensile strength, light weight, conductivity, and biocompatibility, which make them potential building blocks for futuristic technologies such as efficient computers, medical devices, synthetic muscles, and even space elevators.

  • What challenges are associated with manufacturing carbon nanotubes into long fibers?

    -The main challenge is creating a continuous, perfect lattice of carbon atoms in a long tube without defects. The process is difficult because the catalyst used in the growth process tends to deactivate at some point, terminating the growth of the nanotube.

  • What is the chemical makeup of carbon that allows it to form various shapes and structures?

    -Carbon's chemical makeup involves its ability to form covalent bonds with other elements and itself, utilizing its four valence electrons to achieve a stable electron configuration. This versatility allows carbon to create different molecular structures like hydrocarbons, diamonds, and graphite.

  • How does the structure of a carbon nanotube compare to that of graphite?

    -A carbon nanotube takes the same repeating hexagonal structure as graphite and forms a tube by connecting the ends of the sheet to themselves. This cylindrical structure endows carbon nanotubes with incredible strength.

  • What is the significance of the hybridization of carbon atoms in the formation of different carbon structures?

    -Hybridization, such as sp3 in diamonds and sp2 in graphite, affects the shape and strength of the resulting material. sp3 hybridization leads to a tetrahedral structure in diamonds, making them extremely hard, while sp2 hybridization in graphite forms a flat hexagonal structure, contributing to its softness.

  • What is the method used for industrial scale production of high purity carbon nanotubes mentioned in the script?

    -The most promising method for industrial scale production of high purity carbon nanotubes is chemical vapor deposition, where a carbon-containing gas like methane is heated and decomposed, allowing carbon to diffuse into a melted metal catalyst substrate and form nanotubes.

  • How did a Japanese research team in 2020 manage to grow a forest of carbon nanotubes over 15 cm in length?

    -The Japanese research team added a layer of gadolinium to a conventional iron-aluminium oxide catalyst and used lower chamber temperatures along with small concentrations of iron and aluminum vapor, which kept the catalyst active for an extended period of 26 hours, allowing for the growth of longer nanotubes.

  • What are some of the potential applications of carbon nanotubes mentioned in the script?

    -Potential applications of carbon nanotubes include use in superconductors for power lines, incorporation into wearable technology, and as neural interface material for biomedical devices due to their conductivity, flexibility, and biocompatibility.

  • Why are carbon nanotubes not yet used in overhead power lines despite their superior conductivity?

    -The current challenge lies in creating a yarn of nanotubes that can match the conductivity of copper. Electrons move efficiently through individual nanotubes, but there is resistance when the current jumps to a neighboring tube, which limits the overall conductivity of the yarn.

Outlines

00:00

🔬 Discovery of Carbon Nanotubes and Their Properties

In 1991, Japanese physicist Sumio Iijima's experiment led to the creation of carbon nanotubes, a material with unprecedented strength and potential applications in various industries. Iijima's process involved applying a current across graphite rods, resulting in the formation of carbon nanotubes as carbon gas settled into a soot layer. These nanotubes, with their nanometer-wide hexagonal lattice structure, exhibit exceptional tensile strength, lightness, conductivity, and biocompatibility. The paragraph delves into the chemical makeup of carbon, its bonding capabilities, and how these properties influence the unique characteristics of carbon nanotubes.

05:01

📚 Understanding Carbon Bonding and the Structure of Graphene

This paragraph explores the versatility of carbon and its ability to form various structures like hydrocarbons and graphite through different types of bonds. It explains the transition from the simplified Bohr model to a more complex understanding of electron orbitals, which is crucial for grasping the formation of carbon nanotubes. The discussion moves on to the hybridization of carbon atoms in diamonds and graphite, leading to their distinct properties. Diamonds, with sp3 hybridization, form a rigid tetrahedral structure, while graphite, with sp2 hybridization, forms a flat hexagonal pattern that contributes to its softness due to weak van der Waals forces between layers.

10:03

🚀 The Promise of Carbon Nanotubes in Advanced Technologies

Carbon nanotubes, with their strength and lightweight nature, are compared to steel and their potential use in futuristic technologies such as space elevators is highlighted. The paragraph discusses the challenges in manufacturing long, continuous carbon nanotubes and introduces chemical vapor deposition as a promising method for large-scale production. It also touches on recent advancements in growing longer nanotube forests and the implications for stronger woven fibers in the future. The potential applications of carbon nanotubes extend beyond strength, with their conductivity being a key feature for various uses, including in power lines and aircraft.

15:05

đŸ› ïž Applications and Future Prospects of Carbon Nanotubes

The final paragraph discusses the current and potential future applications of carbon nanotubes, emphasizing their conductivity, elasticity, and biocompatibility. It mentions the challenges in creating conductive yarns from nanotubes and the possibility of using them in aerospace for lightning strike protection and in wearable technology. The biomedical applications of carbon nanotubes, particularly as neural interface material, are also explored. The paragraph concludes by reflecting on the transformative impact of new materials on technology and design, with carbon nanotubes being a prime example of such a material with the potential to revolutionize various fields.

Mindmap

Keywords

💡CuriosityStream

CuriosityStream is a subscription-based streaming service that offers a variety of documentaries and non-fiction content. In the context of the video, it is mentioned as the platform that made the video possible, indicating a sponsorship or partnership. The video script promotes a deal involving CuriosityStream and Nebula, offering exclusive content from the Real Engineering team.

💡Carbon Nanotubes

Carbon nanotubes are cylindrical nanostructures made of carbon atoms with exceptional mechanical, electrical, and thermal properties. They are central to the video's theme, as they are discussed as a material with the potential to revolutionize technology and engineering. The script describes their discovery by Sumio Iijima and their unique properties, such as strength and conductivity.

💡Tensile Strength

Tensile strength refers to the maximum amount of stress a material can withstand while being stretched or pulled before breaking. The video emphasizes that carbon nanotubes have the strongest tensile strength known to man, highlighting their potential use in various applications where durability and strength are crucial.

💡Conductive

Conductivity in the context of the video pertains to the ability of a material to allow the flow of electricity. Carbon nanotubes are described as highly conductive, which makes them suitable for applications requiring efficient electrical transmission, such as in cables and biomedical devices.

💡Hydrocarbons

Hydrocarbons are organic compounds consisting of hydrogen and carbon atoms. The script uses methane, a simple hydrocarbon, as an example to explain how carbon forms covalent bonds, which is foundational to understanding the complex structures of materials like carbon nanotubes.

💡Covalent Bond

A covalent bond is a chemical bond formed by the sharing of electron pairs between atoms. The video explains how carbon atoms form covalent bonds with other elements and with themselves, which is essential for the formation of various carbon structures, including carbon nanotubes.

💡Hybridization

Hybridization in chemistry refers to the concept where atomic orbitals combine to form new hybrid orbitals that are suitable for bonding. The video discusses sp3 and sp2 hybridizations, which are crucial for understanding the different structures of carbon, such as in diamonds and graphite, respectively.

💡Graphene

Graphene is a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice. It is mentioned in the script as an extremely strong material due to its hexagonal structure and sp2 bonding. The properties of graphene are relevant to understanding the strength and potential applications of carbon nanotubes, which are essentially rolled-up sheets of graphene.

💡Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a process used to deposit thin films or grow nanostructures from gaseous precursors. In the video, CVD is identified as a promising method for the industrial-scale production of carbon nanotubes, illustrating the challenges and advancements in manufacturing this advanced material.

💡Young's Modulus

Young's modulus is a measure of the stiffness of a material, defined as the ratio of stress to strain in the elastic range of deformation. The script cites graphene's Young's modulus to underscore its strength and rigidity, which are inherited by carbon nanotubes.

💡Neuralink

Neuralink is a company focused on developing brain–machine interfaces. The video mentions Neuralink to highlight the potential of carbon nanotubes in creating smaller, more flexible, and biocompatible wires for neural interfaces, which could revolutionize biomedical implants.

Highlights

Introduction of carbon nanotubes by Sumio Iijima in 1991, a material with potential to revolutionize engineering design.

Carbon nanotubes have the strongest tensile strength known to man and are light, conductive, and biocompatible.

Carbon's versatility due to its ability to form various shapes and bonds, impacting material properties.

Explanation of electron orbitals and how carbon forms covalent bonds, leading to different molecular structures.

Different hybridization of carbon atoms leads to different material properties, such as in diamonds and graphite.

Graphene's strength and elasticity are attributed to its hexagonal structure and strong SP2 bonds.

Carbon nanotubes' strength comes from their continuous hexagonal lattice structure, similar to graphite.

Manufacturing challenges of creating long and pure carbon nanotubes for practical applications.

Chemical vapor deposition as the most promising method for industrial scale production of carbon nanotubes.

Recent advancements in growing longer carbon nanotube forests using a modified chemical vapor deposition method.

Potential applications of carbon nanotubes in conductive materials, such as in power lines and aircraft.

Investigation of carbon nanotubes for use in biomedical devices due to their biocompatibility and conductivity.

The significance of carbon nanotubes in the development of neural interface materials for biomedical implants.

The impact of new material innovations like carbon nanotubes on future design possibilities and technologies.

The promotion of CuriosityStream and Nebula for access to exclusive content and support of Real Engineering's team.

Transcripts

play00:00

This video was made possible by Curiosity Stream.

play00:03

Get access to exclusive content from the Real Engineering team, like the Logistic of D-Day

play00:08

series and our new podcast by signing up to the Nebula and CuriosityStream deal for the

play00:15

amazingly low price of 14.79 a year.

play00:17

In 1991 a Japanese physicist, Sumio Iijima, conducted a momentous experiment.

play00:26

An experiment that introduced the world to material so strong that it could revolutionise

play00:31

how engineers approach design.

play00:34

Taking two graphite rods as electrodes, Sumio applied a current across the rods.

play00:40

A spark arched between them and with it a cloud of carbon gas puffed into existence,

play00:46

vaporising the tip of the anode rod.

play00:48

As the carbon laden air settled on the chamber walls it formed a thin layer of black soot,

play00:54

within it a strange new material appeared.

play00:58

Tiny single layer straws of carbon.

play01:01

Sumio Iijima had just created carbon nanotubes.

play01:05

[1]

play01:06

Laboratory testing of these mysterious little tubes in the following years would reveal

play01:10

that these nanometer-wide hexagonal lattices of carbon had the strongest tensile strength

play01:16

known to man, and this was just As one of the many incredible material properties they

play01:22

displayed.

play01:23

Carbon nanotubes are light, conductive and biocompatible.

play01:26

[2]

play01:27

It soon became clear that the carbon nanotube had the potential to be the building block

play01:32

of futuristic new technologies.

play01:34

The most efficient computers, transformative medical devices, synthetic muscles, or perhaps

play01:41

the most ambitious of all, space elevators, the dream of countless sci-fi authors,

play01:47

Carbon nanotubes has promised to be the catalyst for the next revolution in technology.

play01:52

But, putting this revolutionary material to work will not be easy.

play01:57

It turns out that building a fibre, that is actually a single molecule, of any significant

play02:02

length is incredibly difficult.

play02:05

To understand this fascinating molecule, let’s dive into the chemical makeup of carbon nanotubes.

play02:12

Carbon is a very familiar element.

play02:14

It’s in everything we eat, sleep on and step over.

play02:18

It is the element that holds our DNA together.

play02:21

It forms the carbohydrates, proteins and lipids that we depend on to build and fuel our bodies.

play02:27

It’s the basis of life as we know it.

play02:29

It’s ubiquity in our lives is a result of its versatility.

play02:33

It’s chemical properties allow it to take many different shapes, each impacting it’s

play02:39

material properties in diverse and unique ways.

play02:42

To understand this we need to understand the basic models of how we visualize electron

play02:48

orbits around the nucleus of an atom.

play02:51

To start we have the simplified bohr model, which separates the electrons into shells.

play02:57

The first shell can contain 2 electrons, while the next shell can hold 8.

play03:02

An atom wants to fill each shell to be stable.

play03:05

Let’s take an atom of carbon, which has 6 electrons, to see how this plays out.

play03:10

[3]

play03:11

First we fill the first shell with it’s 2 electrons, then we have 4 electrons left

play03:17

to fill the next shell, leaving 4 open positions in its outer shell

play03:22

The 4 open positions mean that carbon willingly interacts with many other elements as well

play03:28

as itself.

play03:29

Often by sharing electrons in a special type of bond, called a covalent bond.

play03:34

This versatility allows carbon to create many different kinds of molecules.

play03:39

Take hydrocarbons.

play03:41

Hydrogen has 1 electron, and seeks 1 electron to fill it’s inner shell.

play03:45

So, carbon likes to form 4 covalent bonds with 4 hydrogen atoms to form a stable 8 electron

play03:53

outer shell, while helping hydrogen form a stable 2 electron shell.

play03:58

This is methane, an incredibly common molecule that is the main ingredient in natural gas

play04:04

fuels.

play04:05

This is just one arrangement carbon can take.

play04:08

Hydrocarbons take a huge range of shapes and configurations, but what we are interested

play04:13

in is how carbon bonds to itself, but this simplified Bohr model doesn’t give us an

play04:18

understanding of how carbon to carbon bonds take radically different shapes.

play04:23

We need to dive a little deeper before we can understand the magic of carbon nanotubes.

play04:29

Electrons don’t travel in neat 2D circular orbits as the Bohr model would suggest, in

play04:34

fact we can’t even know the position and speed of an electron.

play04:38

Instead we can make predictions about electrons' general locations in 3D space.

play04:44

We call these orbitals, and they are regions where we have about a 90% certainty that an

play04:49

electron is located somewhere within that region.

play04:53

This can get pretty complicated, but for now we just need to concern ourselves with two

play04:58

types.

play04:59

S and P orbitals.

play05:00

[4]

play05:01

S orbitals are spherical in shape with the nucleus of the atom at their centre.

play05:06

P orbitals are often called dumbbell shaped, but I don’t know what gym these nerds are

play05:11

going to, because I have never seen a dumbbell like this.

play05:14

It’s more like a figure of 8 shape like the infinity symbol.

play05:18

In the ground state, electrons will occupy the lowest energy orbitals first, which in

play05:23

this case is the 1S orbital.

play05:25

It can hold two electrons.

play05:28

Next we have the 2S orbital, which is a larger sphere, and can also hold 2 electrons.

play05:34

Then we have our three P orbitals, one aligned along the X, Y and Z axis, each capable of

play05:41

holding 2 electrons.

play05:43

Carbon in its ground state has the 1S and 2S orbitals filled, with one electron in the

play05:49

Px orbital and one in the Py orbital.

play05:52

To be stable, Carbon wants to fill these three p orbitals with 2 electrons each.

play05:57

Now this where things get a little funky and confusing, and it will be on your final exam.

play06:04

Carbon can bond to itself in different ways that affect these orbital shapes.

play06:09

Take diamonds.

play06:10

To fill these orbitals, carbon bonds with 4 neighbouring carbon atoms.

play06:15

To do this it promotes one electron from it’s 2S orbital into the empty Pz orbital.

play06:21

[5] This Pz orbital is higher energy than the 2S orbital, and the electron doesn’t

play06:27

want to stay there, so the carbon atom takes on new hybrid orbital shapes to compensate.

play06:34

This is called sp3 hybridisation, which is a mixture of S and P orbital shapes and looks

play06:40

something like this.

play06:42

Where one side of the figure of 8 expands while the other contracts.

play06:47

The 2S and 3 P orbitals are transformed into these new SP3 orbital shapes.

play06:53

They repel each other equally in this 3D space to form this four lobed tetrahedral shape

play06:59

with 109.5 degrees between each lobe.

play07:03

Covalent bonds now form between the carbon molecules where these orbital lobes overlap

play07:09

head on in what’s called a sigma bond.

play07:12

This creates a repeating structure like this and it’s this rigid framework of carbon

play07:17

atoms that makes diamond extremely hard.

play07:20

Now, what’s fascinating to me, is that you can take the same carbon atoms and now form

play07:26

graphite, a material so soft that we use it as pencil lead and as a lubricant.

play07:32

How does that work?

play07:35

Here a different hybridisation occurs.

play07:38

Once again 1 electron from the 2S orbital is promoted into the Pz orbital, but this

play07:44

time the S orbital hybridizes with only 2 of the P orbitals, giving us the name SP2

play07:51

hybridization.

play07:52

[5] This gives us three SP hybrid orbitals and 1 regular P orbitals.

play07:58

This new arrangement causes the orbitals to take a new shape, with the 3 SP orbitals arranging

play08:05

themselves in a flat plane separated by 120 degrees, with the P orbital perpendicular

play08:13

to them.

play08:14

Now, when the carbon atoms combine, the heads of the SP orbitals overlap once again to form

play08:20

this flat hexagonal shape.

play08:22

A hexagon pattern is naturally a very strong and energy-efficient shape.

play08:27

For example, bees don’t intentionally build honeycombs in hexagons.

play08:31

They form as a result of the warm bee bodies melting the wax and the triple junction hardens

play08:38

in the strongest formation.

play08:39

[6] The shape is frequently used in aerospace applications where high strength and low weight

play08:45

is a priority.

play08:47

These SP2 bonds are stronger than SP3 bonds, because they have a higher s character.

play08:53

This sounds complicated, but all it means is that they are more like S orbitals than

play08:58

a P orbitals.

play08:59

Because there are 3 SP bonds, they have a 33% S character, whereas SP3 orbitals have

play09:06

4 SP bonds giving them 25% S character.

play09:11

S orbitals are closer to the nucleus, making SP2 bonds shorter and more electronegative

play09:17

than SP3 bonds, and thus stronger.

play09:20

[7]

play09:21

This hexagonal structure and strong bonds make graphene exceedingly strong.

play09:27

Laboratory testing of graphene using atomic force microscopes has shown graphene has a

play09:33

young's modulus of 0.5 TPa and an ultimate tensile strength 130 gigapascals.

play09:40

[8]

play09:41

So strong that if we could somehow create a large perfect sheep of graphene, which we

play09:46

can’t, we could build an invisible single atom deep hammock that could support the weight

play09:51

of a cat.

play09:52

[9] Imagine the amount of cats we could confuse.

play09:55

That’s the world I want to live in.

play09:57

That’s an entertaining, but not terribly useful application, but graphene is a very

play10:03

common material and the form we are used to, graphite, is not strong.

play10:08

This hexagonal shape itself is extremely strong, but because graphite forms these single atom

play10:14

layer sheets with only weak van der waal forces holding them together, the sheets can easily

play10:20

slide over each other, which is the reason graphite is so soft.

play10:24

[10]

play10:25

Now what is interesting is that carbon nanotubes take the same repeating hexagonal structure

play10:30

as graphite.

play10:32

The ends of the sheets are simply loops and connect with themselves to form a tube, and

play10:36

this structure is what gives carbon nanotubes their incredible strength.

play10:41

Researchers found that single-walled nanotubes have strength similar to that of graphite,

play10:46

about 130 Gigapascals.

play10:47

[11]

play10:48

For the non-engineers in the crowd, let me rephrase that.

play10:52

It’s a lot.

play10:54

About 100 times greater than steel, and to boot it’s vastly lighter.

play10:59

If this material could be feasibly manufactured into a single extremely long fibre, it could

play11:05

potentially open up entirely new design possibilities.

play11:09

Like the space elevator.

play11:10

I’d explain exactly why carbon fibres would make space elevators possible now, but I already

play11:16

did that in a past video that I will link at the end of this one.

play11:20

So where are there space elevators?

play11:22

Here lies the difficulty.

play11:23

Manufacturing carbon nanotubes.

play11:24

Carbon nanotubes strength relies on creating a continuous perfect lattice of carbon atoms

play11:25

in a long tube, and that process is not something we have yet developed.

play11:26

So how can we create carbon nanotubes?

play11:27

Things have changed a bit since the days of Sumio Ijima’s first discovery.

play11:28

The most promising method for industrial scale production of high purity carbon nanotubes

play11:33

is chemical vapor deposition.

play11:35

[12]

play11:36

In this manufacturing method, a precursor gas containing carbon, like methane (CH4)

play11:41

is introduced into a vacuum chamber and heated.

play11:44

As the heat increases inside the chamber the bonds between the carbon and hydrogen atoms

play11:49

begin to decompose.

play11:51

The carbon then diffuses into a melted metal catalyst substrate.

play11:56

This then becomes a metal-carbon solution, which eventually becomes supersaturated with

play12:02

carbon.

play12:03

At this point the carbon starts to precipitate out and form carbon nanotubes..

play12:08

While the hydrogen bi-product is vented out of the chamber to avoid an explosion.

play12:13

Our research has focused on increasing the length of these nanotubes while not sacrificing

play12:17

their structure, yield or quantity.

play12:20

While some labs have gotten individual tubes as long as 50 cm it’s been a struggle to

play12:26

get larger bundles of tubes, which are called forests, to a length greater than 2cm. [13]

play12:32

This is because the catalyst is guaranteed to deactivate at some point during the growth

play12:37

process, terminating the growth of the nanotube.

play12:40

The key to growing longer nanotubes is minimizing the probability of the catalyst deactivation

play12:46

[14]

play12:47

In 2020, a research team based in Japan managed to grow a forest over 15 cms in length, 7

play12:55

times longer than anyone else, using a new method of chemical vapor deposition that managed

play13:01

to keep the catalyst active for 26 hours.

play13:04

[15]

play13:05

They did this by adding a layer of gadolinium to a conventional iron-aluminium oxide catalyst

play13:11

coated onto a silicon substrate.

play13:13

Then using a lower chamber temperature, small concentrations of iron and aluminum vapor

play13:19

were added into the chamber.

play13:21

These factors combined managed to keep the iron-aluminium oxide catalyst active for much

play13:27

longer.

play13:28

[16]

play13:29

This method is a major leap forward that could allow carbon nanotube products to begin entering

play13:33

the market, but we are still a long way from a space elevator.

play13:38

Most products today call for the fibres to be woven together to form a textile like yarn.

play13:44

One study I found wove together 1 mm long nanotubes and into a yarn and then impregnated

play13:50

that with an epoxy resin to form a composite material, which had a pretty good tensile

play13:55

strength of 1.6 Gigapascals.

play13:57

[17] Beating aluminium in its strength to weight capabilities, but below a traditional

play14:02

carbon fibre composite.

play14:04

However, these new longer nanotubes may give us stronger woven fibres in future.

play14:10

It’s important to remember that carbon nanotubes aren’t just strong.

play14:14

Their most exciting new term applications will come about as a result of their other

play14:18

material properties.

play14:20

Like their conductive abilities.

play14:22

Like graphite, nanotubes are highly conductive, because each carbon atom is only bonded to

play14:28

3 other carbon atoms, each atom has 1 free valence electron available for electrical

play14:35

conduction.

play14:36

Making carbon nanotubes excellent conductors.

play14:39

The conducting core of cables that make up our overhead grid lines are typically made

play14:43

from aluminium.

play14:45

Even though aluminium is a poorer conductor than copper, and thus causes a greater loss

play14:50

in power over the lines.

play14:52

It’s used because it’s cheaper and lighter.

play14:55

Allowing support structures for overhead lines to be spaced further apart.

play15:00

Individual nanotubes are orders of magnitudes more conductive than copper, but creating

play15:04

a yarn of nanotubes that could match copper has been a challenge.

play15:09

Electrons move through individual nanotubes very efficiently, but when the tube comes

play15:13

to an end the current meets resistance when jumping to a neighbouring tube.

play15:18

So these longer tubes developed last year are opening doors to conductors that are vastly

play15:23

lighter than aluminium and more conductive than copper.

play15:27

[18]

play15:28

These could be used for grid connections, allowing our power lines to be stretch further

play15:32

without supports and minimize the loss of power to heat resistance, but for now the

play15:37

price of nanotubes likely shuts that door.

play15:40

Instead we could see these wires being used in super lightweight aircraft or cars.

play15:46

They are even being investigated as a means of helping composite structure planes, like

play15:51

the 787, survive lightning strikes.

play15:53

The 787 is primarily composed of carbon and glass fibre reinforced plastics, but because

play16:00

they do not conduct electricity, the plane has additional conductive structures added

play16:05

to protect it from lightning strikes,

play16:07

like a thin copper mesh.

play16:08

[19] This mesh adds weight that increases fuel consumption.

play16:12

This could be drastically reduced by including a carbon nanotube mesh on the surface of the

play16:17

composite instead.

play16:19

Nanotubes are quite elastic.

play16:22

Capable of stretching to 18% of their original length and returning to their original shape

play16:26

after.

play16:27

This could allow conductive carbon fibre wires to be incorporated into wearable technology.

play16:32

The carbon fibre threads can even be treated like a normal thread and sewn into a fabric

play16:33

using a sewing machine.

play16:34

Perhaps the most exciting application is in biomedical devices.

play16:37

[20] Carbon nanotubes are biocompatible.

play16:40

Meaning they are not toxic, non reactive, and do not elicit an immune response.

play16:46

Combine this with their conductivity,flexibility and strength, nanotubes become extremely attractive

play16:52

as neural interface material.

play16:55

A large part of Neuralink, Elon Musk’s neural interface companies, efforts have been focusing

play17:00

on creating smaller wires and the machines needed to implant them.

play17:05

Larger, stiffer wires tear into flexible brain tissue over time and causes scar tissue to

play17:11

form around the wire, preventing signals from passing from the neurons to the wires.

play17:18

Nanotube wiring could be made smaller and more flexible while being accepted by the

play17:23

body.

play17:24

A potentially game changing material for biomedical implants.

play17:28

As with every major material innovation, from age hardened aluminium ushering in a new age

play17:34

of aviation, to silicon semiconductors opening up an entire new world for computers, carbon

play17:41

nanotubes have the potential to open the door to design possibilities and technologies we

play17:46

have yet to imagine.

play17:48

New materials radically change how and what we build, and learning more about manufacturing

play17:53

processes for complex machines really gives you insight on how a material like this could

play17:58

change things.

play18:00

One of my favourite series on CuriosityStream.

play18:03

How to Build teaches you exactly that.

play18:06

An in depth series that takes you onto the manufacturing floor of super cars, jumbo jet

play18:11

wings and a satellites.

play18:13

It’s a fantastic 3 parts series that along is worth the 14.79 price of curiosity stream,

play18:20

but along with this series you get access to thousands of documentaries by award winning

play18:25

filmmakers, and you will get access to Nebula.

play18:28

The streaming service I started with over 100 other informative YouTube creators, like

play18:34

MBKHD, Wendover Productions and Mustard.

play18:37

Nebula, is the home of all of Real Engineering’s current and future exclusive content, like

play18:43

the Logistics of D-Day series and our upcoming Battle of Britain series, which will release

play18:48

some time later this year.

play18:50

By signing up for this bundle deal you unlock budgets for our team to continue creating

play18:56

these series and improves the quality of animations and research we can do right here on YouTube

play19:02

too.

play19:03

Sign up today for under 15 dollars to support this channel in the most effective way possible,

play19:09

and get an amazing deal for yourself in the process.

play19:13

If you are looking for something else to watch right now, why not watch our last video on

play19:17

the future of nuclear space propulsion, or watch Real Science latest video “The Insane

play19:22

Biology of the Hammerhead Shark”.

Rate This
★
★
★
★
★

5.0 / 5 (0 votes)

Ähnliche Tags
Carbon NanotubesMaterial ScienceSumio IijimaTech InnovationFuture DesignConductive MaterialsSpace ElevatorsManufacturing ProcessBiocompatibilityNeuralinkElectron Orbitals
Benötigen Sie eine Zusammenfassung auf Englisch?