Volumes by Slicing (Calculus)

Houston Math Prep
19 Jan 202012:37

Summary

TLDREl video trata sobre cómo calcular volúmenes mediante secciones en cálculo integral. El presentador explica cómo construir volúmenes a partir de la suma de áreas de figuras geométricas, como semicírculos, cuadrados y triángulos equiláteros, apiladas sobre una región determinada. Se utilizan integrales para calcular estas áreas y luego obtener el volumen total. Se muestra cómo derivar las fórmulas para las diferentes formas y se ilustra el proceso de simplificación de estas integrales, destacando cómo las áreas de las secciones cambian en función de la posición en la región base.

Takeaways

  • 📐 El método de volúmenes por cortes se basa en usar integrales para calcular volúmenes sumando áreas de cortes infinitos.
  • 🔵 En el ejemplo, la región está delimitada por el eje X y una semicircunferencia con radio 6, y su área se puede calcular usando integrales.
  • ➕ Para encontrar el área entre curvas, se usa la fórmula: integral de la función superior menos la función inferior.
  • 🍰 El volumen por cortes se genera al apilar formas (como semicírculos, cuadrados o triángulos) sobre una base rectangular.
  • 🔺 El área de cada corte semicircular se calcula como 1/2 * π * r^2, donde el radio es la mitad de la longitud de la base del corte.
  • ✏️ Para simplificar, el radio se expresa como √(36 - x^2) dividido por 2, resultando en una fórmula para el área de cada semicírculo.
  • 🔢 El volumen total con cortes semicirculares se calcula con la integral de -6 a 6 de la fórmula simplificada.
  • 📏 También se puede calcular el volumen con cortes cuadrados, usando la fórmula de área de un cuadrado (lado^2).
  • 🔻 En el caso de los triángulos equiláteros, la fórmula de área involucra 1/2 * base * altura, y se deduce la altura usando trigonometría.
  • 🔧 Cada tipo de corte genera un volumen diferente, dependiendo de la forma de los cortes, pero el principio subyacente es el mismo: integrar áreas para obtener volumen.

Q & A

  • ¿Qué es el concepto de volúmenes por rebanado?

    -El concepto de volúmenes por rebanado implica calcular el volumen de un objeto sumando áreas de secciones transversales (rebanadas) a lo largo de una región. Esto se hace utilizando integrales para acumular áreas y obtener el volumen.

  • ¿Cómo se determina el área entre curvas en este ejemplo?

    -Para determinar el área entre curvas, se utiliza la integral del límite inferior al superior de la función superior menos la función inferior. En este caso, la función superior es una semicircunferencia y la función inferior es la línea y = 0.

  • ¿Qué forma tiene la región mencionada en el video?

    -La región mencionada en el video es una semicircunferencia con radio 6, delimitada por las coordenadas de x que van desde -6 hasta 6 y la curva superior dada por la ecuación y = √(36 - x^2).

  • ¿Cómo se configura la integral para encontrar el volumen cuando se utilizan rebanadas semicirculares?

    -Para calcular el volumen con rebanadas semicirculares, se usa la fórmula del área de un semicírculo, que es (1/2)πr². Luego, se configura la integral desde -6 hasta 6, donde r es √(36 - x²) dividido por 2. El volumen se obtiene integrando la expresión π/8 * (36 - x²).

  • ¿Qué sucede con el radio en el caso de los semicírculos en el video?

    -El radio de los semicírculos no es la longitud total de la distancia entre las curvas, sino la mitad de esa longitud. En este caso, el radio es √(36 - x²) dividido entre 2.

  • ¿Cómo cambia el volumen si se usan rebanadas cuadradas en lugar de semicírculos?

    -Si se usan rebanadas cuadradas en lugar de semicírculos, el área de cada rebanada es simplemente el lado de cada cuadrado al cuadrado, es decir, (√(36 - x²))². El volumen se calcula integrando esta expresión desde -6 hasta 6, lo que da el volumen de un sólido con rebanadas cuadradas.

  • ¿Cómo se determina el área de cada rebanada cuadrada?

    -El área de cada rebanada cuadrada se obtiene elevando al cuadrado la longitud del lado, que es √(36 - x²). Al cuadrar esta expresión, se simplifica a 36 - x², que se integra para obtener el volumen total.

  • ¿Qué sucede si las rebanadas son triángulos equiláteros?

    -Cuando las rebanadas son triángulos equiláteros, el área de cada triángulo se calcula usando la fórmula (1/2) * base * altura. La base es √(36 - x²) y la altura se puede calcular usando trigonometría o propiedades de triángulos equiláteros.

  • ¿Cómo se determina la altura de un triángulo equilátero en el ejemplo?

    -La altura del triángulo equilátero se puede determinar usando trigonometría. Se sabe que el ángulo en un triángulo equilátero es de 60 grados, por lo que se usa la relación tangente de 60° para obtener la altura en términos de la base (√(36 - x²)/2).

  • ¿Cuál es la integral que describe el volumen con rebanadas de triángulos equiláteros?

    -La integral para el volumen con rebanadas de triángulos equiláteros es ∫[−6,6] (√3/4) * (36 − x²) dx, donde (√3/4) proviene de la combinación de las fórmulas de la base y la altura del triángulo equilátero.

Outlines

00:00

📏 Introducción a los volúmenes por secciones

Este párrafo introduce el concepto de cálculo de volúmenes por secciones mediante integrales, utilizando un ejemplo con una región delimitada por una semicírculo y el eje x. El área entre curvas se explica brevemente, pero el enfoque principal es la transición de áreas a volúmenes, al construir figuras tridimensionales sobre estas áreas mediante cortes o secciones. En este caso, se menciona que las secciones serán semicirculares.

05:01

🔄 Explicación del cálculo de volúmenes usando semicírculos

Se describe cómo las rebanadas semicirculares se colocan sobre las áreas rectangulares, sumando los volúmenes de todas estas para obtener el volumen total. El área de cada semicírculo se calcula usando la fórmula para el área de un círculo, pero se ajusta para semicírculos. El radio de estas secciones es la mitad de la distancia desde la raíz de 36 menos x al eje x. Finalmente, se simplifica la fórmula del volumen, dando lugar a una integral que representa el volumen total de la figura con secciones semicirculares.

10:01

🔳 Construcción de volúmenes con secciones cuadradas

Este párrafo introduce un nuevo método de seccionado, ahora utilizando cortes cuadrados en lugar de semicírculos. Las secciones cuadradas se colocan sobre la misma base anterior, pero ahora el área de cada sección es simplemente el cuadrado de la longitud del lado, que es la raíz de 36 menos x cuadrado. Se establece la integral para encontrar el volumen de la figura tridimensional resultante de las secciones cuadradas.

🔺 Cálculo de volúmenes con triángulos equiláteros

Aquí se presenta una nueva forma de calcular volúmenes, utilizando cortes con triángulos equiláteros. El párrafo explica cómo se obtiene la base del triángulo y se dedica gran parte del texto a calcular la altura del triángulo utilizando trigonometría, específicamente la tangente de 60 grados. Después de obtener las expresiones para la base y la altura, se formula el área de cada triángulo equilátero y se incorpora en la integral para hallar el volumen total.

Mindmap

Keywords

💡Volumen por rebanadas

Es una técnica utilizada en cálculo para encontrar el volumen de un sólido mediante la suma de áreas de secciones transversales a lo largo de una región. En el video, se explica cómo se puede utilizar esta técnica apilando formas geométricas, como semicírculos, cuadrados o triángulos equiláteros, sobre una base, y luego sumando sus áreas para obtener el volumen total.

💡Integral

La integral es un concepto fundamental del cálculo que representa la suma de infinitos valores pequeños para obtener un valor total, como área o volumen. En el video, se utiliza la integral para sumar las áreas de las secciones transversales de diferentes formas geométricas, lo que permite calcular el volumen de un sólido generado por esas secciones.

💡Semicírculo

Un semicírculo es la mitad de un círculo. En el video, se menciona un semicírculo superior definido por la ecuación y = √(36 - x²) que se utiliza para delimitar la región en la cual se apilan las secciones transversales, y sobre esta base se construyen rebanadas semicirculares para calcular el volumen.

💡Área de una sección transversal

Se refiere al área de cada rebanada o corte que se usa para calcular el volumen. Dependiendo de la forma que se utilice para las secciones (semicírculo, cuadrado, triángulo equilátero), el área de la sección cambia. En el video, el área de cada rebanada se calcula utilizando fórmulas geométricas como la del área de un semicírculo o un cuadrado.

💡Radio (R)

El radio es la distancia desde el centro de un círculo hasta cualquier punto en su borde. En el contexto del video, el radio del semicírculo es crucial para determinar el área de las rebanadas semicirculares. El video muestra cómo el radio se extrae de la fórmula y = √(36 - x²), dividiéndolo entre dos para adaptarse a la geometría del semicírculo.

💡Pi (π)

Pi es una constante matemática utilizada para calcular áreas y volúmenes relacionados con círculos y es aproximadamente 3.14159. En el video, π aparece en la fórmula para el área del semicírculo (½πR²) y se utiliza para calcular el volumen cuando se apilan las rebanadas semicirculares.

💡Cuadrado

Un cuadrado es una forma geométrica con cuatro lados iguales. En el video, se utilizan cuadrados como secciones transversales para calcular un volumen alternativo al de los semicírculos. La fórmula para el área de un cuadrado es el lado al cuadrado, y el lado está dado por la ecuación √(36 - x²).

💡Triángulo equilátero

Un triángulo equilátero es un triángulo donde todos los lados y ángulos son iguales. El video explica cómo se pueden usar rebanadas en forma de triángulos equiláteros sobre la misma base semicircular para calcular un volumen diferente. La fórmula para el área de un triángulo equilátero se deriva de la base y la altura, y se usa trigonometría para calcular la altura.

💡Región delimitada

Se refiere al área o región en el plano que está limitada por ciertas curvas. En el video, la región está delimitada por el eje x (y=0) y un semicírculo superior definido por la ecuación y = √(36 - x²). Esta región es la base sobre la cual se apilan las secciones transversales para calcular el volumen.

💡Eje x

El eje x es la línea horizontal en el plano cartesiano, y en este caso actúa como la base inferior de la región delimitada. En el video, la función y=0 corresponde al eje x, y junto con la curva semicircular superior, delimita el área en la que se apilan las secciones para calcular volúmenes.

Highlights

Introduction to volumes by slicing using integrals, often following the topic of area between curves.

The region is bounded by two curves: the x-axis (y = 0) and a semicircle (y = sqrt(36 - x^2)) with radius 6.

Setup of integral for finding the area between the curves from -6 to 6, noting symmetry allows for simplifying from 0 to 6.

Transition from calculating area to volume, where rectangles become the base of shapes that are stacked to create volume.

First type of slicing discussed: semicircular slices stacked over the region to find volume.

Explanation of the semicircular slice formula: volume as the integral of the area of semicircles, which is 1/2 π r^2, over the given range.

Radius of each semicircular slice is half the distance across the semicircle, derived from sqrt(36 - x^2) / 2.

Simplifying the integral for semicircular slices: using the formula PI/8 (36 - x^2) dx from -6 to 6.

Introduction to another slicing method: square-shaped slices stacked over the same region for a different volume.

Formula for the volume with square slices: integral of (side length)^2, where the side is the distance sqrt(36 - x^2).

Simplified formula for square slices: integral of (36 - x^2) dx from -6 to 6.

Third slicing method introduced: equilateral triangle slices built on top of the region, resulting in a different shape.

Formula for equilateral triangle slices: 1/2 base times height, where the base is sqrt(36 - x^2) and height is derived using trigonometry.

Height for the equilateral triangle slice calculated as sqrt(3)/2 * sqrt(36 - x^2) using trigonometric relationships.

Final formula for the equilateral triangle volume: integral of (sqrt(3)/4) * (36 - x^2) dx from -6 to 6, combining base and height.

Transcripts

play00:01

everyone Houston math prep here talking

play00:04

about volumes by slicing which is

play00:06

something that you might do in calculus

play00:08

with integrals right after we've talked

play00:10

about finding area between curves so

play00:13

here I've got two curves I've got some

play00:16

region that's bounded by these curves

play00:19

the bottom is just the x axis y equals

play00:21

zero and this top is an upper semicircle

play00:24

here y equals the square root of 36

play00:27

minus x squared so it's a semicircle it

play00:31

has radius six my leftmost point here is

play00:35

at negative 6 and my rightmost point

play00:38

here is at 6 if we were just going to

play00:41

find the area of this region so we would

play00:45

look at doing the integral from A to B

play00:48

of the top function minus the bottom

play00:51

function if I draw my rectangle let's

play00:54

say this way vertically so if I draw it

play00:56

vertically top function minus the bottom

play00:59

function would be the root formula minus

play01:02

is zero minus zero wouldn't change

play01:04

anything so we would just get root 36

play01:07

minus x squared DX from A to B would be

play01:13

from negative six to six we could go

play01:15

from zero to six and double it due to

play01:17

the symmetry not going to go into that

play01:19

too much here this integral itself is

play01:22

actually a little bit to deal with so

play01:25

we're not gonna actually work this but I

play01:27

just want to make sure that we remember

play01:28

this idea the idea with volume by

play01:31

slicing is going to be not how to find

play01:34

area using this rectangle but imagine

play01:37

laying this region sort of down on the

play01:39

desk and this rectangle is no longer

play01:44

just a rectangle that I'm using to fill

play01:46

the space to find area within an

play01:48

integral this rectangle is actually

play01:51

going to be the base for some shape on

play01:53

top of it and I'm going to build the

play01:56

same shape over and over and over and

play01:59

get a volume basically by making a bunch

play02:04

of slices that are a similar shape so

play02:07

we're gonna look at how we'll do that

play02:09

the first type of slice that I'm going

play02:11

to use I'm going to build semi circular

play02:14

slices

play02:15

on top of my semicircular region so

play02:17

let's take a look at how that will work

play02:21

so if I look at this here and I think

play02:24

about all of my rectangles that would

play02:27

run through the region and I'm stacking

play02:28

semi-circle slices on top of each of

play02:31

those rectangles then I would add up all

play02:35

the areas on top of those rectangles to

play02:39

give me a volume so where normally we're

play02:43

doing an in summing an infinite number

play02:46

of lengths to give us area we are now

play02:49

summing an infinite number of areas to

play02:51

give us volume hopefully that makes some

play02:54

sense there so now looking at what we

play02:57

have here so we have a bunch of

play03:00

cross-sections or slices that are semi

play03:02

circles the way we'll do volume and the

play03:05

way a lot of books will do this is they

play03:07

will say well volume will be the

play03:09

integral from A to B just like before

play03:12

they'll use something sometimes like a

play03:15

of X DX and this a of X is really what

play03:18

you have to determine in each situation

play03:20

and it is what is the formula for the

play03:23

area of each slice so if you look at

play03:26

this one slice that I have kind of

play03:28

through the middle of the region how do

play03:29

I find a formula for the area of any

play03:31

slice no matter where it is okay so if

play03:34

we look at the base remember that this

play03:36

curved part was y equals the square root

play03:39

of 36 minus x squared and this line over

play03:44

here was y equals 0 and this point way

play03:48

over here is that x equals negative 6

play03:50

and this point way over here is at x

play03:53

equals 6 this one sort of toward the

play03:56

middle as far as a slice go so it's

play03:58

giving us quite a bit of area the slice

play04:01

is down at the end are much smaller

play04:02

they're not going to provide much area

play04:04

in terms of volume so each one gives us

play04:06

a different amount I need to figure out

play04:08

a formula for a of X so a of X is going

play04:13

to be the area of each semicircular

play04:15

slice so this will depend on the shape

play04:18

this is a semicircle so what's the area

play04:20

of a semicircle well the area of a

play04:23

circle is PI R squared so if I want a

play04:27

half circle or a semi

play04:28

circle then the area formula should be

play04:31

1/2 PI R squared that would be half a

play04:34

circle as the area for each slice so the

play04:37

trick then is figuring out what do I put

play04:40

in for R the rest of this no problem I

play04:43

got to figure out what is R so if I go

play04:45

over here and I say well radius would

play04:48

kind of be along this edge here the

play04:50

problem is this line here is not the

play04:53

radius of this semicircle it is the

play04:56

diameter it's all the way across right

play04:58

so if you can imagine how would we get a

play05:01

radius well think about like a point

play05:03

here only half of this line right would

play05:06

be a radius that would be an R for us so

play05:10

what is that well it would be half that

play05:12

distance from the root down to zero in

play05:16

other words this distance is going to be

play05:18

the square root of 36 minus x squared

play05:22

divided by 2 is really what we've got so

play05:27

that's what we'll go in for our radius

play05:29

there let's go ahead and put that in our

play05:31

a of X so our a of X is going to equal

play05:35

1/2 pi and then we'll have a root of 36

play05:41

minus x squared over 2 that's a radius

play05:45

squared we would do some simplifying

play05:48

here I'm going to kind of do this all in

play05:50

one shot so if I square that will take

play05:53

care of the root the root will go away

play05:54

if I square the two on the bottom that's

play05:56

going to give me a 4 and then if I have

play05:59

4 times this 2 that's also on the bottom

play06:01

that's going to give me an 8 right so I

play06:03

really have keep the pie I have PI over

play06:07

2 times 4 which is 8 and then again the

play06:11

square gets rid of the root and we have

play06:14

this so our volume for this object with

play06:19

all these semicircular slices would be

play06:22

the integral from negative 6 to 6 PI

play06:26

over 8 36 minus x squared DX and this

play06:32

would just be power rules you could bump

play06:35

the PI over 8 out we're not going to

play06:36

work out the full integral in this one

play06:38

we're just going to set it up and give

play06:39

you the idea for slicing here

play06:41

okay let's look at another one this time

play06:43

we're going to do a volume but we're

play06:46

going to do it with a different type of

play06:49

slice we're going to do square shaped

play06:51

slices so same base right but the volume

play06:55

that we're building on top of this

play06:57

region is going to have all of its

play06:59

slices as a square shape so you can see

play07:01

the volume takes on a very different

play07:03

tone especially as you look at sort of

play07:06

the top contours of the shape there so

play07:09

let's look at how to build volume with

play07:11

this one so if we have square slices

play07:16

right so our volume again is going to

play07:20

equal the integral from A to B formula

play07:23

for the area of each slice integral DX

play07:27

right okay so what is the area for this

play07:30

well this one's not so bad right

play07:32

I need the area of a square well square

play07:35

is simply going to equal

play07:39

whatever the side length is squared

play07:42

right side times side they're the same

play07:44

so this length here and we already have

play07:47

a formula for this so this length we

play07:50

already know from before right

play07:53

this was square root 36 minus x squared

play07:57

that's the side of one side length I

play08:01

need to square that right so side

play08:05

squared is going to be the square root

play08:07

of 36 minus x squared squared in other

play08:12

words 36 minus x squared so very similar

play08:16

right based on the shape of the base so

play08:18

our volume for this one would be the

play08:21

integral from negative six to six of

play08:23

simply 36 minus x squared DX and again

play08:30

you can work this out this isn't too bad

play08:32

just power rule

play08:33

plugging in you should be able to get

play08:35

something for this I think but let's go

play08:37

ahead and do one more similar but a

play08:41

different shape this one's a little bit

play08:43

more complicated we're going to actually

play08:46

build equilateral triangles on top so

play08:49

you notice we get a nice little slant on

play08:51

one side of the volume as we build this

play08:54

looks more rounded on one side but the

play08:57

other side has a nice slant surface to

play08:59

it so we've got equilateral triangles

play09:02

we're gonna build and we're gonna go

play09:04

ahead and do that again volume is going

play09:08

to equal I'm gonna give me some room

play09:10

here integral from A to B a of xdx our

play09:15

base is the same so we're still going to

play09:16

be going from negative six to six we

play09:19

need to figure out what's the formula

play09:21

for this equilateral triangle area that

play09:24

we're dealing with so area well area of

play09:27

this equilateral triangle any triangle I

play09:30

guess you could say something like

play09:31

one-half base times height there are

play09:34

some other ways to do this but let's

play09:35

just say you go with this this is a

play09:37

pretty common way that people will say

play09:39

area for a triangle so base I think we

play09:42

have down right the base is just going

play09:44

to be this distance and we already know

play09:46

that this distance is the square root of

play09:48

36 minus x-square from all our other

play09:50

stuff and then the question becomes what

play09:53

is the height right what is this height

play09:56

well you can do a lot of things with

play09:59

this I guess you could do some maybe

play10:01

some trigonometry if you know this is

play10:04

equilateral you know that this is 60

play10:06

degrees so if you wanted to figure out

play10:08

some things you could do it a bunch of

play10:09

different ways if you already know stuff

play10:11

about similar triangles you could just

play10:12

figure it out that way you could figure

play10:16

it out using maybe this half of a right

play10:18

triangle here and you could say

play10:21

something like well let's see tangent of

play10:24

60 degrees is equal to the opposite side

play10:28

over the adjacent side and this would

play10:31

just be half of it right so it would be

play10:33

root 36 minus x squared over 2 lots of

play10:39

things you can do there so if I simplify

play10:42

tangent of 60 will get root 3 I can go

play10:45

ahead and multiply the top and bottom by

play10:46

two if I want and get something like

play10:50

this instead so we're getting close to

play10:53

figuring out what H is so if I go ahead

play10:56

and multiply both sides by the root on

play11:00

the bottom and divide both sides by two

play11:02

and don't worry too much about

play11:04

simplifying at this point in time then I

play11:06

would get root three over two times this

play11:09

square root and we can do some different

play11:11

things with simplifying there but that

play11:13

would be our H so this one a little bit

play11:15

more to deal with as far as getting the

play11:17

a of X right not as nice as a square

play11:21

obviously but now we can go ahead and

play11:23

take this and put it in there put our

play11:27

base in there as well the nice thing is

play11:30

if we had 1/2 base times height then

play11:34

that's 1/2 times the root 36 minus x

play11:39

squared and then the height this really

play11:43

gives us another root 3 over 2 and gives

play11:45

us another of the same root so it

play11:47

actually allows us to get rid of the

play11:49

root and combine those so if we go ahead

play11:52

and turn this into a nice formula all in

play11:54

one we're going to get something like

play11:56

first of all integral negative 6 to 6

play11:59

hasn't changed I'll go ahead and combine

play12:02

this I could put it out front

play12:03

but I'll just leave it in the integral

play12:04

for now so I'd have a root three on top

play12:06

two times two on the bottom would give

play12:08

me a four there and then the two roots

play12:10

multiplied together would just give me a

play12:12

36 minus x squared so we'd integrate all

play12:15

of that DX from negative six to six okay

play12:20

hopefully this gives you an idea it's

play12:21

really the same thing but you're

play12:23

building area on top of each rectangle

play12:27

to create volumes or integrating

play12:29

infinite number of areas to give volume

play12:31

by slicing alright good luck with this

Rate This

5.0 / 5 (0 votes)

الوسوم ذات الصلة
CálculoVolumenesCortesSemicírculosGeometríaIntegralesMatemáticasÁreaFigurasEducación
هل تحتاج إلى تلخيص باللغة الإنجليزية؟